MATH-401	Advanced	analvsis	П
		a	

Ruppen Hans-Jörg	g			
Cursus	Sem.	Туре	Language of	English
Bioengineering	MA2, MA4	Opt.	teaching	Linglish
SC master EPFL	MA2, MA4	Opt.	Credits	4 Summor
Sciences du vivant	MA2, MA4	Opt.	Semester	Spring
			Exam	Oral
			Workload	120h 14

Hours

Courses Exercises

Number of positions

Remark

Advanced Analysis I and Advanced Analysis II must be taken together as a whole

Summary

Getting access to the use of Banach spaces, Hilbert spaces, Fourier series, Fourier tansforms and distributions.

Content

- 1. Inner product spaces and Hilbert spaces
- 2. L2 spaces
- 3. Orthonormal sets in Hilbert spaces: Fourier coefficients, Bessel inequality and equality
- 4. Periodic signals and Fourier series
- 5. Fourier Transform in L1 and in L2
- 6. Distrribution spaces
- 7. Tempered distributions and Fourier transform

Keywords

inner product spaces, Hilbert spaces, Lp spaces, orthonoral sets, Fourier coefficients, Fourier transform, distributions, tempered distributions, peridoic signals, Dirac comb, sampling of a signal

Learning Prerequisites

Recommended courses Advanced Analysis I

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the main concepts and propositions presented in the lecture
- Detect the main properties (as Banach, Hilbert, norm, inner product) in examples
- · Exploit the main propositions in concrete examples
- Formalize the main tools used for signals (sampling,...)
- Theorize the environment in which Fourier analysis is permormed

Transversal skills

4 weekly 2 weekly

2 weekly

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Communicate effectively, being understood, including across different languages and cultures.

Teaching methods

Ex cathedra lecture and exercises in the classroom

Expected student activities

Understanding the mathematical language necessary for a deep understanding of signals and their transforms, of the Lebesgue spaces and the distribution spaces

Assessment methods

Oral exam

Resources

Bibliography

C. Gasquet, P. Witomski: Fourier Analysis and Applications, Springer, ISBN 0-387-98485-2 W. Kammler: A First Course in Fourier AnalysisDavid, Online ISBN: 9780511619700 Hardback ISBN: 9780521883405 Paperback ISBN: 9780521709798

Ressources en bibliothèque

- A First Course in Fourier AnalysisDavid / Kammler
- Fourier Analysis and Applications / Gasquet

Notes/Handbook

Lecture notes: Advanced Analysis II by Hans-Jörg Ruppen (Librairie La Fontaine)

Websites

- http://cmspc11.epfl.ch/hjr
- https://cmspc11.epfl.ch/AFNextGen

Prerequisite for

Diploma