CH-341 Physical chemistry of interfaces

Rothenberger Guido

Cursus	Sem.	Туре	Language of	English
Chemistry and chemical engineering	BA5	Obl.	teaching	Linglish
			Credits	3
			Session	Winter
			Semester	Fall
			Exam	Written
			Workload	90h
			Weeks	14
			Hours	3 weekly
			Courses	2 weekly
			Exercises	1 weekly
			Number of	-
			positions	

Summary

Acquire an understanding of interfacial phenomena and of micro-heterogeneous colloidal solution systems.

Content

1. Thermodynamics of interfaces

Interfacial tension and surface thermodynamic functions, Laplace pressure, spreading and wetting, contact angle (Young-Dupré equation), capillary ascension, vapor pressure of curved interfaces (Kelvin equation).

2. Colloids/Micelles

Gibbs adsorption equation, solutions of amphiphile molecules (surfactants), hydrophobic effect, micelle formation, critical micellar concentration. Monomolecular Langmuir-Blodgett films.

3. Solid/gas and solid/solution adsorptions

Langmuir, Fowler-Guggenheim and BET isotherms. Adsorption of gases on porous solids, capillary condensation in mesoporous particles.

4. Electrokinetic phenomena

Zeta potential, electro-osmosis and electrophoresis, streaming and sedimentation potentials.

5. Interfaces

Stability of colloids according to the DLVO model. Membrane potential, Goldman's equation.

6. Light scattering by colloids

Rayleigh equation, absorption and scattering cross sections. Determination of the size of particles by light scattering.

7. Characterization of interfaces by microscopy

Introduction to scanning tunnelling microscopy (STM) and atomic force microscopy (AFM).

Keywords

Surface tension. Micelles. Adsorption. Isotherms. Electrokinetic phenomena.

Learning Prerequisites

Recommended courses

Thermodynamique I & II. Electrochimie des solutions.

Important concepts to start the course Thermodynamic functions. Charged interface, Gouy-Chapman model of the double layer.

Learning Outcomes

By the end of the course, the student must be able to:

- Formulate the thermodynamic definition of the surface tension
- Derive the equations related to the surface tension (Young-Laplace, Kelvin, etc.)
- Establish Gibb's adsorption equation
- Discuss the properties of surfactant solutions
- Derive the expressions of the adsorption isotherms
- Derive the equations relative to the electrokinetic phenomena
- Discuss the stability of colloids according to the DLVO model
- Discuss the scattering of light by small particles

Transversal skills

- Use a work methodology appropriate to the task.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedra lectures and exercises

Expected student activities

Reading the lecture notes and solving the exercises

Assessment methods

Written examination.

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Bibliography See lecture notes.

Notes/Handbook

Websites

• http://scgc.epfl.ch/telechargement_cours_chimie