Ξ	Ρ	۶	L

Number of positions

MICRO-570	Advanced machine learning							
	Billard Aude							
Cursus		Sem.	Туре	l anguage of	English			
Energy Manager	ment and Sustainability	MA2, MA4	Opt.	teaching	English			
Microtechnics		MA2	Opt.	Credits	4			
Systems Engineering minor	ering minor	E	Opt.	Session Semester	Summer Spring			
				Exam	Oral			
				Workload	120h			
				Weeks	14			
				Hours	3 weekly			
				Courses	2 weekly			
				TP	1 weekly			
				Project	0 weekly			

Summary

This course will present some of the core advanced methods in the field for structure discovery, classification and non-linear regression. This is an advanced class in Machine Learning; hence, students are expected to have some background in the field.

Content

The class will be accompanied by practical session on computer, using the mldemos software (http://mldemos.epfl.ch) that encompasses more than 30 state of the art algorithms.

- Introduction to the major mathematical principles of Machine Learning
- Structure Discovery: spectral and kernel methods, kernel PCA.CCA, X-means
- Advanced Nonlinear Regression Methods
- Stochastic Modeling: Particle Filters, Reinforcement Learning and Gradient Methods

Keywords Machine learning, statistics

Learning Prerequisites

Required courses Probability & Statistics, Linear Algebra

Recommended courses Machine Learning, Pattern Recognition

Important concepts to start the course

Linear Algebra: Eigenvalue and singular value decomposition Statistics: Definitions of probability density function, marginal, likelihood, covariance, correlation Optimization: Lagrange multipliers, gradient descent, local and global optima

Learning Outcomes

By the end of the course, the student must be able to:

- Choose an appropriate method
- Apply the method properly

Transversal skills

- Use a work methodology appropriate to the task.
- Write a scientific or technical report.

Teaching methods

Ex-cathedra lectures, exercises, computer-based practical sessions

Expected student activities

Each week, students should read the selected chapters of the Lecture Notes *prior to class.* Students must attend the computer-based practice session and prepare regular reports that are graded.

Assessment methods

50% personal work during semester, 50% oral exam

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Ressources en bibliothèque

• Machine Learning Technique / Billard

Notes/Handbook

Machine Learning Techniques, available at the Librairie Polytechnique. To be purchased before the class starts.

Websites

• http://lasa.epfl.ch/teaching/lectures/ML_MSc_Advanced/

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=14885#section-0

Prerequisite for

Students must be knowledgeable about machine learning and have taken a course in the area either at EPFL or elsewhere. Relevant courses at EPFL are: Applied Machine Learning - MICRO-455 Pattern Classification and Machine Learning: CS-433 Data Analysis and Model Classification - EE-516