ChE-407	Electrochemical engine	ering			
	Boghossian Ardemis Anoush				
Cursus	S	em.	Туре	Language of	English
Energy minor	E		Opt.	teaching	Linglish
Ingchim.	Μ	A2, MA4	Opt.	Credits	3
		,		Session	Summer
				Semester	Spring
				Exam	During the semester
				Workload	90h
				Weeks	14
				Hours	3 weekly
				Courses	2 weekly
				Exercises	1 weekly
				Number of positions	

Summary

Use thermodynamics, electrochemical kinetics, electrocatalysis and notions of transport phenomena in the design of electrochemical reactors. Application in electrosynthesis and fuel cells. Presentation of examples of industrial processes

Content

- Electrochemical thermodynamics, application to fuel cells.
- Electrochemical Kinetics (Bulter-Volmer and Marcus models).
- Electrochemical kinetics; application to fuel cells.
- Transport phenomena in electrochemistry (determination of the mass transfer coefficient).
- The rotating disk electrode.
- The electrochemical reaction engineering.
- The optimum current density for galvanostatic operation.
- Distribution of current and potential in an electrochemical reactor.
- Examples of large-scale industrial processes.

Keywords

Bulter-Volmer model; Marcus model; rotating disk electrode; electrochemical reactor; fuel cells; mass transfer coefficient; electrosynthesis.

Learning Outcomes

By the end of the course, the student must be able to:

- Choose an electrocatalyst for a given electrochemical synthesis.
- Estimate the mass transfer coefficient and the limiting diffusion current
- · Estimate the distribution of current and potential in an electrochemical reactor
- Choose the type of electrochemical reactor for a given production.
- Optimize an electrochemical process
- Optimize the current density for a galvanostatic operation.

Yes

Supervision

Assistants

Resources Notes/Handbook

Electrochemical Engineering (2012) ; Ch. Comninellis et G. Foti (notes)