BIOENG-433 Biotechnology lab (for CGC)

	Pick Horst					
Cursus		Sem.	Туре	Language of	English	
Biotechnology minor		E	Opt.	teaching	English	
Ingchim.		MA2, MA4	Opt.	Credits Withdrawal Session Semester Exam Workload Weeks Hours TP Number of positions	4 Unauthorized Summer Spring During the semester 120h 14 6 weekly 6 weekly	
				It is not allowed to withdraw		

from this subject after the registration deadline.

Summary

Students apply basic techniques in molecular biology to clone a cDNA of interest into an expression plasmid in order to produce its protein product in mammalian cells. They purify the recombinant protein and characterize it biochemically.

Content

- Growth of E.coli in simple shaker flasks and in small biore-actors.
- Isolation of plasmid DNA from overnight E.coli cultures and analysis by restriction digest.
- Basic mammalian cell culture techniques.
- Cell lysis and extraction of intracellular fluorescent protein.
- Analysis of a recombinant product by ELISA (enzyme-linked immunosorbent assay).
- Analysis of (recombinant) protein by SDS-PAGE.
- Peptide mapping of proteins and analysis by chromatography.
- Detection and quantification of DNA by fluorescent dye.
- Bioinformatic: computer-based analysis of DNA sequences.

Learning Prerequisites

Required courses Pharmaceutical Biotechnology (BIOENG-437)

Learning Outcomes

By the end of the course, the student must be able to:

- Interpret experimental results
- Analyze DNA and proteins
- Assess / Evaluate data obtained in wetlab experiments
- Hypothesize the underlying causes of observed phenomena
- Produce a scientific report

Transversal skills

- Write a scientific or technical report.
- Collect data.
- Demonstrate the capacity for critical thinking

Teaching methods

Practical course Biotechnology Laboratory

Assessment methods

Continious control Lab Reports / Tests / Lab notebook

Resources Bibliography "Molecular Biology of the Cell", Alberts et al

Ressources en bibliothèque

Molecular Biology of the Cell / Alberts

Notes/Handbook Protocols for Biotechnology Laboratory