

Ξ	Ρ	8	L	

Gastpar	Michael
Gasipai	wiichaei

Cursus	Sem.	Туре	Language of	English
Communication systems minor	Н	Obl.	teaching	English
Computer and Communication Sciences		Obl.	Credits Session	7 Winter Fall
Computer science minor	Н	Obl.	Semester	
Computer science	MA1, MA3	MA1_MA3_Opt. Workload	Written	
Electrical and Electronical Engineering	MA1, MA3		Workload Weeks Hours	210h 14
SC master EPFL	MA1, MA3	Obl.		6 weekly
			Courses	4 weekly
			Exercises	2 weekly

Number of positions

Summary

The mathematical principles of communication that govern the compression and transmission of data and the design of efficient methods of doing so.

Content

- 1. Mathematical definition of information and the study of its properties.
- 2. Source coding: efficient representation of message sources.
- 3. Communication channels and their capacity.
- 4. Coding for reliable communication over noisy channels.
- 5. Multi-user communications: multi access and broadcast channels.
- 6. Lossy source coding : approximate representation of message sources.
- 7. Information Theory and statistics

Learning Outcomes

By the end of the course, the student must be able to:

- Formulate the fundamenal concepts of information theory such as entropy, mutual information, channel capacity
- Elaborate the principles of source coding and data transmission
- Analyze source codes and channel codes
- Apply information theoretic methods to novel settings

Teaching methods

Ex cathedra + exercises

Assessment methods

With continuous control

Resources

Ressources en bibliothèque

• Elements of Information Theory / Cover

Websites

http://moodle.epfl.ch/enrol/index.php?id=14593