	Ξ	Ρ	ε	L
--	---	---	---	---

Number of positions

MICRO-455 Applied machine learning

Billard Aude			
Cursus	Sem.	Туре	Language of
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching
Microtechnics	MA1, MA3	Obl.	Credits
Microtechnics	MA1, MA3	Opt.	Session Semester
Systems Engineering minor	Н	Opt.	Exam
, , ,		•	Workload
			Weeks
			Hours
			Courses
			TP

Summary

Real-world engineering applications must cope with a large dataset of dynamic variables, which cannot be well approximated by classical or deterministic models. This course gives an overview of methods from Machine Learning for the analysis of non-linear, highly noisy and multi dimensional data.

Content

Because machine Learning can only be understood through practice, by using the algorithms, the course is accompanied with practicals during which students test a variety of machine learning algorithm with *real world data*. The courses uses matlab libraries for machine learning, as well as the MLDEMOS TOOLBOX that entails a large variety of Machine Learning algorithms.

- Binary and multi-class classifiers: LDA, GMM with Bayes, SVM, Boosting, etc.
- Pattern recognition and clustering
- Non-linear Regression
- Markov-Based Techniques for Time Series Analysis

Keywords Machine Learning, Statistics

Learning Prerequisites

Required courses Linear Algebra, Probability & Statistics

Important concepts to start the course

Linear Algebra: Eigenvalue and singular value decomposition Statistics: Definitions of probability density function, marginal, likelihood, covariance, correlation Optimization: Lagrange multipliers, gradient descent, local and global optima

Learning Outcomes

By the end of the course, the student must be able to:

- Choose an appropriate ML method for a given problem
- Assess / Evaluate appropriatedly and comparatively ML methods given a set of data

• Apply appropriatedly ML methods

Transversal skills

- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Write a scientific or technical report.
- Make an oral presentation.

Teaching methods

Ex-cathedra, exercises, computer-based practical sessions

Expected student activities

Students who are no longer up to date with the pre-requisites should work on these in parralel to taking the class. Students are expected to attend the exercise sessions and the computer-based practice sessions. They should revise the class notes prior to going to practical session to be on top of the the theoretical material prior to applying it.

Assessment methods

Final written exam (75% grade), in-class assessment (25% grade).

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Ressources en bibliothèque

• Machine Learning Techniques / Billard

Notes/Handbook

Machine Learning Techniques, available at the Librairie Polytechnique. To be purchased before the class starts.

Websites

• http://lasa.epfl.ch/teaching/lectures/ML_Msc/index.php

Prerequisite for

Advanced Machine Learning, spring semester