

ME-341 Heat and mass transfer

retrait Andrea, Thome John Michard		
Cursus	Sem.	Type
Life Sciences Engineering	BA6	Opt.
Mechanical engineering	BA6	Obl.
Space technologies minor	Е	Opt.

Ferrari Andrea Thome John Richard

Language of teaching	English
Credits	4
Session	Summer
Semester	Spring
Exam	Written
Workload	120h
Weeks	14
Hours	4 weekly
Courses	3 weekly
Exercises	1 weekly
Number of	
positions	

Summary

This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative heat transfer.

Content

- 1. Introduction, to types of heat transfer. Conduction, radiation, convection.
- 2. One-dimensional, and two dimensional steady state, conductive heat transfer
- 3. Transient conductive heat transfer.
- 4. Convective heat transfer for external flows.
- 5. Convective heat transfer for internal flows.
- 6. Natural convection.
- 7. Radiation: black bodies, grey bodies, form factors of surfaces, solar and infrared radiation.
- 8. Heat exchangers: Types of heat exchangers, efficiency, thermal design methods.

Keywords

Heat transfer, conduction, convection, thermal radiation

Learning Prerequisites

Recommended courses

• Incompressible fluid mechanics

Learning Outcomes

By the end of the course, the student must be able to:

- Model fluid flows in energy conversion systems, compute pressure drops and heat losses and fluid structure interactions, E10
- Explain and apply the concepts of heat and mass transfer, E3
- Design and calculate heat exchangers, E15

Teaching methods

The course is organized with lectures and problem working sessions

Heat and mass transfer Page 1 / 2

Assessment methods

Written exam

Supervision

Assistants Yes

Resources

Bibliography

Free net book "A Heat Transfer Textbook" : John H. Lienhard IV and John H. Lienhard V, http://web.mit.edu/lienhard/www/ahtt.html

Ressources en bibliothèque

• A Heat Transfer Textbook / Lienhard

Heat and mass transfer Page 2 / 2