PHYS-445 Nuclear fusion and plasma physics

Fasoli Ambrogi	o, Tran Minh Quang		
Cursus	Sem.	Туре	Langua
Ingphys	MA1, MA3	Opt.	teaching
Nuclear engineering	MA1	Opt.	Credits
			Somost

Language of teaching	English
Credits	4
Session	Winter
Semester	Fall
Exam	Oral
Workload	120h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of positions	

Summary

The goal of the course is to provide the physics and technology basis for controlled fusion research, from the main elements of plasma physics to the reactor concepts.

Content

- 1) Basics of thermonuclear fusion
- 2) The plasma state and its collective effects
- 3) Charged particle motion and collisional effects
- 4) Fluid description of a plasma
- 5) Plasma equilibrium and stability
- 6) Magnetic confinement: Tokamak and Stellarator
- 7) Waves in plasma
- 8) Wave-particle interactions
- 9) Heating and non inductive current drive by radio frequency waves
- 10) Heating and non inductive current drive by neutral particle beams
- 11) Material science and technology: Low and high Temperature superconductor Properties of material under irradiation
- 12) Some nuclear aspects of a fusion reactor: Tritium production
- 13) Licensing a fusion reactor: safety, nuclear waste
- 14) Inertial confinement

Learning Prerequisites

Recommended courses

Basicknowledge of electricity and magnetism, and of simple concepts of fluids

Learning Outcomes

By the end of the course, the student must be able to:

- Design the main elements of a fusion reactor
- Identify the main physics challenges on the way to fusion
- Identify the main technological challenges of fusion

Ex cathedra and in-class exercises

oral examen (100%)

Resources

Ressources en bibliothèque

- Plasma Physics and Fusion Energy / Freidberg
- Introduction to Plasma Physcs / Chen

Websites

• https://spcnet.epfl.ch/nuclfus/