CS-210	Functional program	ming			
	Kuncak Viktor, Odersky Martin				
Cursus		Sem.	Туре	Language of teaching Credits	English
Communication systems		BA3	Opt.		
Computer science		BA3	Obl.		5
HES - IN		н	Obl.	Session Semester	Winter Fall
				Exam	During the semester
				Workload	150h
				Weeks	14
				Hours	4 weekly
				Courses	2 weekly
				Exercises	2 weekly
				Number of positions	

Summary

Understanding of the principles and applications of declaratative programming, the fundamental models of program execution, application of fundamental methods of program composition, meta-programming through the construction of interpreters and advanced programming techniques.

Content

Introduction to programming in Scala Expressions and functions Classes and objects Evaluation by rewriting Pattern matching Polymorphism Evaluation strategies Domain-specific languages Constraint programming Language interpretation An interpreter for Lisp An interpreter for Prolog

Learning Prerequisites

Required courses Introduction to the programming objet Theory and practice of programming

Important concepts to start the course Compiler Construction Foundations of Software

Learning Outcomes

By the end of the course, the student must be able to:

- Create functional programs
- Design robust and readable software
- Formalize program correctness
- Interpret programs automatically

- Prove correctness using induction
- Construct software

Transversal skills

- Demonstrate a capacity for creativity.
- Use a work methodology appropriate to the task.
- Set objectives and design an action plan to reach those objectives.
- Give feedback (critique) in an appropriate fashion.

Teaching methods MOOC. Ex Cathedra. Exercises and projects

Assessment methods

Continuous and written test at the end of the course

Resources

Bibliography Abelson/Sussman : Structure and Interpretation of Computer Programs, MIT Press

Ressources en bibliothèque

• Structure and Interpretation of Computer Programs / Abelson

Websites

http://Lampwww.epfl.ch/teaching