

| Zysman | Eytan |
|--------|-------|
|        |       |

| Cursus                    | Sem. | Type |
|---------------------------|------|------|
| Informatique              | BA3  | Opt. |
| Systèmes de communication | BA3  | Opt. |

| Langue<br>d'enseignement | français   |
|--------------------------|------------|
|                          | 4          |
| Crédits                  | 4          |
| Session                  | Hiver      |
| Semestre                 | Automne    |
| Examen                   | Pendant le |
|                          | semestre   |
| Charge                   | 120h       |
| Semaines                 | 14         |
| Heures                   | 3 hebdo    |
| Cours                    | 2 hebdo    |
| Exercices                | 1 hebdo    |
| Nombre de                |            |
| places                   |            |
|                          |            |

#### Résumé

Découvrir le monde de l'électronique depuis les lois fondamentales des composants discrets linéaires et non linéaires. Les circuits obtenus avec des assemblages de composants nécessitent de nombreuses techniques de modélisation et d'analyse ainsi que des vérification exploitant un simulateur

#### Contenu

#### Cours

- · Composants passifs linéaires
- Techniques de résolution de circuits linéaires
- Les diodes
- introduction aux transistors
- Techniques de modélisation des composants non linéaires
- Simulation électronique

## **Exercices**

L'étudiant appliquera les nombreuses méthodes vues en cours pour résoudre des exercices pratiques qui pourront être vérifiés avec la simulation.

### Mots-clés

Composants passifs, composants actifs, composants linéaires, composants non linéaires, diodes, transistors, modélisation, simulation, Lois de Kirchhoff, Thévenin-Norton, Superposition, impédances complexes, fonctions de transfert, Bode, concept d'amplification.

# Compétences requises

# Cours prérequis obligatoires

Cours d'analyse: équation différentielles du premier et second ordre, nombres complexes, résolution de système d'équations linéaires.

### Cours prérequis indicatifs

Electricité de base: électrostatique, électrocinétique.

### Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

Electronique I Page 1 / 3



- Analyser des circuits complexes
- Modéliser des composants non linéaires
- Modéliser des circuits complexes
- Raisonner à partir de méthode d'observation
- Dessiner des comportements temporels et fréquentiels
- Interpréter des signaux de natures diverses
- Utiliser les bonnes méthodes de résolution

## Compétences transversales

- Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.
- · Auto-évaluer son niveau de compétence acquise et planifier ses prochains objectifs d'apprentissage.

## Méthode d'enseignement

Cours ex cathedra et exercices dirigés en salle.

#### Méthode d'évaluation

Plusieurs quiz répartis sur le semestre Travail écrit

#### **Encadrement**

Office hours Non Assistants Oui Forum électronique Oui

#### Ressources

## **Bibliographie**

• Principes d'électronique: cours et exercices corrigés. Albert Paul Malvino ; trad. de l'américain par Bernard Boittiaux ; Paris : Dunod, 2002

### Ressources en bibliothèque

• Principes d'électronique / Malvino

### **Polycopiés**

- liste de sites approfondissant les notions vues en cours
- · Diapositives du cours
- Diapositives commentées
- Exercices et corrigés.
- Développements en cours sur Tablet

### **Liens Moodle**

• http://moodle.epfl.ch/course/view.php?id=13726

## Préparation pour

Électronique II

Electronique I Page 2 / 3



Electronique I Page 3 / 3