

CS-251 Theory of computation

Vishnoi Nisheeth		
Cursus	Sem.	Type
Communication systems	BA4	Obl.
Computer science minor	E	Obl.
Computer science	BA4	Obl.
HES - IN	E	Obl.

Language of teaching	English
Credits	4
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	120h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematically precise understanding of their fundamental capabilities and limitations.

Content

- Basic models of computation (finite automata, Turing machine)
- Elements of computability theory (undecidability, reducibility)
- Introduction to complexity theory (time and space complexity, P vs. NP problem, theory of NP-completeness)

Keywords

theory of computation, Turing machines, P vs. NP problem, complexity theory, computability theory, finite automata, NP-completeness

Learning Prerequisites

Required courses

CS-101 Advanced information, computation, communication I CS-250 Algorithms

Learning Outcomes

By the end of the course, the student must be able to:

- Perform a rigorous study of performance of an algorithm or a protocol
- · Classify computational difficulty of a decision problem
- Define the notion of NP-completeness
- Analyze various computation models
- Design a reduction between two computational problems
- Characterize different complexity classes
- Explain P vs. NP problem

Transversal skills

Theory of computation Page 1 / 2

- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

Ex cathedra with exercises

Assessment methods

Written exam and continuous control

Theory of computation Page 2 / 2