

Cursus	Sem.	Туре	Longuago of	English
Communication systems	BA5	Opt.	teaching	English
Computer science	BA5	Opt.	Credits Session	4 Winter
			Semester	Fall
			Exam	During the semester
			Workload	120h
			Weeks	14
			Hours	3 weekly
			Courses	2 weekly
			Exercises	1 weekly
			Number of positions	

Remark

CS-352

pas donné en 2016-17

Summary

An in-depth introduction to some of the key ideas and tools of Theoretical Computer Science. Covered material touches upon: streaming algorithms, spectral graph theory, interactive and zero-knowledge proofs, pseudorandomness, algorithmic game theory, and quantum computing.

Content

- Basics of streaming algorithms
- Fundamentals of spectral graph theory
- The power of randomness and interaction (zero-knowledge proofs and PCP theorem)

Theoretical computer science

- Theory of pseudorandomness and one-way functions
- Introduction to algorithmic game theory
- Nature-inspired models of computations (quantum computing)

Keywords

theoretical computer science, algorithms, computational complexity, streaming algorithms, spectral graph theory, randomness, pseudorandomness, algorithmic game theory, quantum computing

Learning Prerequisites

Required courses CS-150 Discrete Structures CS-250 Algorithms CS-251 Theory of Computation (former name: Theoretical Computer Science/Informatique théorique) Mathematical maturity, i.e., ability to read and write mathematical proofs

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze computational models
- Apply mathematical tools to understand computational processes

- Design space-/time-efficient algorithms for graph and estimation problems
- Formalize properties of interactive and cryptographic protocols
- Describe quantum model of computation
- Model game-theoretic aspects of real-world scenarios
- Explain the concept of pseudorandomness
- Perform a rigorous study of performance of an algorithm or a protocol

Transversal skills

- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

Ex cathedra with exercises

Assessment methods

Continuous control (problem sets and exams during the semester, no final exam)