Number of positions

Unsupervised & reinforcement learning in neural networks

Cowaltia	Marc-Oliver
Gewallu	

Cursus	Sem.	Туре	Language of	English
Biocomputing minor	Н	Opt.	teaching	English
Computational Neurosciences minor	Н	Opt.	Credits Session	4 Winter
Computer science	MA1, MA3	Opt.	Semester	Fall
Neuroscience		Opt.	Exam	Written
SC master EPFL	MA1, MA3	Opt.	Workload Weeks	120h 14
Sciences du vivant	MA1, MA3	Opt.	Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly

Summary

CS-434

Learning is observable in animal and human behavior, but learning is also a topic of computer science. This course links algorithms from machine learning with biological phenomena of synaptic plasticity. The course covers unsupervised and reinforcement learning, but not supervised learning.

Content

I. unsupervised learning

- 1. Neurons and Synapses in the Brain. Synaptic Changes
- 2. Biology of unsupervised learning, Hebb rule and LTP .
- 3. Hebb rule in a linear neuron model and PCA
- 4. Analysis of Hebb rule and application to development
- 5. Plasticity and Independent Component Analysis (ICA)
- 6. Competitive Learning and Clustering
- 7. Kohonen networks

II. Reinforcement learning

- 8. The paradigm of reward-based learning
- in biology and theoretical formalisation
- 9. Reinforcement learning in discrete spaces
- 10. Eligibity traces and reinforcement learning in continuous spaces and applications

III. Can the brain implement Unsupervised and Reinforcement learning?

- 11. Spiking neurons and learning: STDP
- 12. Neuromodulators and Learning
- 13. Long-term stability of synaptic memory
- 14. Unsupervised learning from an optimality
- viewpoint: Information Maximization

Keywords

synaptic plasticity learning rules learning algorithms neural networks

Learning Prerequisites

Required courses Analysis I-III, linear algebra, probability and statistics

Recommended courses

Analysis I-III, linear algebra, probability and statistics

Important concepts to start the course

The student needs to be able to use mathematical abstrations as well as linear algebra, probability theory and statistics, analysis and calculus.

Learning Outcomes

By the end of the course, the student must be able to:

- Design learning algorithms
- Analyze learning algorithms and plasticity rules
- · Classify learning algorithms and plasticity rules
- Prove convergence of batch learning rules
- Develop a learning rule based on optimization principles
- Formulate on-line plasticity rules
- Apply unsupervised and reinforcement learning rules

Transversal skills

- Write a scientific or technical report.
- · Collect data.
- Negotiate effectively within the group.

Teaching methods

Classroom teaching, exercises and miniproject

Expected student activities

participate in class (slides are not self-contained) solve paper and pencil exercises write and run simulations for miniproject write report

Assessment methods

The final grade is composed of two mini-projects and one exam. The two mini-projects together count 1/3 of the final grade. The final exam counts 2/3 of the final grade. The exam will be written if the course has more than 40 students and oral otherwise.

Supervision

Office hours	No
Assistants	Yes
Forum	Yes

Resources

Bibliography

Dayan & Abbott : Theoretical Neuroscience, MIT Press 2001; Gerstner & Kistler : Spiking Neuron Models, Cambridge Univ. Press Sutton & Barto: Reinforcement learning, MIT Press1998,

Ressources en bibliothèque

- Theoretical Neuroscience / Dayan
- Spiking Neuron Models / Gerstner
- Reinforcement learning / Sutton

Websites

• http://moodle.epfl.ch/

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=1241