CS-454	Convex optimization and applications		
	Lebret Hervé		
Cursus		Sem.	Туре
Computational science and Engineering		MA2	Opt.
Computer science		MA2	Opt.
SC master EPFL		MA2, MA4	Opt.
Systems Engineering minor		Е	Opt.

Language of teaching	English		
Credits	4		
Session	Summer		
Semester	Spring		
Exam	During the		
	semester		
Workload	120h		
Weeks	14		
Hours	3 weekly		
Courses	1 weekly		
Exercises	2 weekly		
Number of			
positions			

Summary

Optimization is not only a major segment of applied mathematics, it is also a critical problem in many engineering and economic fields. In any situation where resources are limited, decision makers try to solve problems they face in the best possible manner. The course provides theory and practice.

Content

The class will cover topics such as: Convex sets and functions Recognizing convex optimization problems Optimality Conditions and Duality Linear Programming (geometry of linear programming, applications in network optimization, the simplex method) Least squares and quadratic programs Semidefinite programming Interior point methods

Keywords

Convex Optimisation

Learning Prerequisites

Required courses A good background in linear algebra. Mastering MATLAB is a plus!

Recommended courses

Basic Linear Algebra

Learning Outcomes

By the end of the course, the student must be able to:

Solve Convex optimization problems

Teaching methods

Ex-cathedra lectures and exercise sessions(in English).

Assessment methods

Midterm (25%) and final exam (50%). Small personal project (25%). Exams are open-text and on paper (no use of computers)

Resources

Bibliography Book : Convex Optimization by Stephen Boyd and Lieven Vandenberghe

Ressources en bibliothèque

Convex Optimization / Boyd