

ENV-542 Advanced satellite positioning

Botteron Cyril, Skaloud Jan

Cursus	Sem.	Type
Environmental Sciences and Engineering	MA2, MA4	Opt.
Microtechnics	MA2	Opt.
Space technologies minor	Е	Opt.

Language of teaching	English	
Credits	4	
Withdrawal	Unauthorized	
Session	Summer	
Semester	Spring	
Exam	During the	
	semester	
Workload	120h	
Weeks	14	
Hours	4 weekly	
Courses	2 weekly	
Exercises	1 weekly	
TP	1 weekly	
Number of		
positions		
It is not allowed to withdraw from this subject after the registration deadline.		

Summary

All fundamental principals behind modern satellite positioning to acquire, track and evaluate direct and indirect satellite signals and process them for positioning and environment-monitoring applications.

Content

Concept of satellite positioning

- basic principals & reference frames
- orbit computation & simple positioning

Signal modulation and structure

- RF propagation in space
- signal structure

Receiver technology

- signal preprocessing
- signal acquisition & tracking

Error models and differencing concepts

- code and carrier phase measurements
- linear combination of observations

Algorithms for positioning

- code and carrier-phase smoothed-code
- carrier-phase cycle ambiguity determination

Algorithms for environmental sensing

- water vapor estimation
- total electron content estimation
- GNSS reflectometry

Keywords

GNSS, GPS, GLONASS, Galileo, Beidou, satellite, positioning, signal modulation, detection, estimation, signal processing

Learning Prerequisites

Recommended courses

Fundamentals of satellite positioning, signals and systems, or signal processing

Important concepts to start the course

Linear algebra, basic signal processing, statistics, programmation in Matlab

Learning Outcomes

By the end of the course, the student must be able to:

- · Implement signal acqusition and tracking
- Develop estimation procedure for precise relative positioning
- · Interpret error sources as signal of environment
- Apply orbit calculation and two algorithms for absolute point -positioning
- Synthesize a particular problem in GNSS for other students
- Solve carrier-phase ambiguities in geometry-free scenario

Transversal skills

- · Make an oral presentation.
- Summarize an article or a technical report.
- · Collect data.

Teaching methods

Ex cathedra, exercises (part in computer room), demonstrations

Expected student activities

Active participation in the course and lab assignments, programmation of algoritms and self-control (debugging), study of scientific papers.

Assessment methods

Continous control, 3 tests

Supervision

Office hours No
Assistants Yes
Forum No

Resources

Bibliography

Recommended literature on Moodle.

Notes/Handbook

Slides, book chapter and scientific papers distributed via Moodle.

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=13837

Prerequisite for

Sensor orientation