

CH-351 Molecular dynamics and Monte-Carlo simulations

Röthlisberger Ursula		
Cursus	Sem.	Type
Chemistry	BA6	Opt.
Computational science and Engineering	MA2	Opt.
HES - CGC	Е	Opt.

Language of teaching	English
Credits	2
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	60h
Weeks	14
Hours	2 weekly
Courses	1 weekly
Exercises	1 weekly
Number of	
positions	

Summary

Introduction to molecular dynamics and Monte-Carlo simulation methods.

Content

- Time-dependent Schrödinger equation
- · Statistical mechanics
- · Short introduction to statistical mechanics
- Molecular Dynamics simulation
- Monte Carlo simulation

Learning Outcomes

By the end of the course, the student must be able to:

- Manage basic theoretical concepts of Molecular Dynamics and Monte Carlo methods.
- Carry out simple Molecular Dynamics and monte Carlo simulations.

Transversal skills

- Take feedback (critique) and respond in an appropriate manner.
- Use both general and domain specific IT resources and tools
- Write a scientific or technical report.