ChE-302	Transport pheno	Transport phenomena II				
	Sivula Kevin					
Cursus		Sem.	Туре	Language of teaching Credits	English	
Biotechnology minor		E	Opt.			
Chemical Engineering		BA6	Obl.		3	
HES - CGC		E	Obl.	Session Semester	Summer Spring	
				Exam	During the semester	
				Workload	90h	
				Weeks	14	
				Hours	4 weekly	
				Courses	2 weekly	
				Exercises	2 weekly	

Summary

This course integrates intermediate fluid mechanics with heat and mass transport phenomena to enable students to analyze problems of interest to a chemical engineer. Students develop abilities to design basic transport modules for engineering application.

Content

- Turbulent flow
- The universal velocity profile (logarithmic low)
- · Boundary layer theory
- · Dimentional analysis and dimentionless groups
- Blasius and von Karman approaches
- · Flows in porous media
- Blanke-Kozeney and Ergun equations
- Study of filtration
- Fluidization
- Heat transfert (unsteady state)
- · Estimation of heat transfer coefficient without phase transition
- · Heat exchangers

Learning Outcomes

By the end of the course, the student must be able to:

- Estimate heat and mass transfer coefficients in chemical engineering situations
- · Formulate solutions to complex transport problems
- Assess / Evaluate non-dimensional numbers and simplify situations
- Design transport modules (e.g. heat exchangers, fixed or fluidized beds)
- Apply boundary layer theory to transport situations
- · Formalize velocity profiles in turbulent flow

EPFL

Number of positions