

Summary

The students will learn about the essential chemical, thermodynamic and physical mechanisms governing thin film growth, about the most important process techniques and their typical features, including process-microstructure relationships.

Content

* Introduction (Samples, applications, importance, history, overview).

* Major deposition methods with examples and typical applications: - evaporation - introduction to cold plasmas - sputter processes - reactive plasma processes - chemical vapour deposition (CVD) - plasma enhanced CVD - further methods including plasma surface treatments

* Nucleation and growth models

* Examples throughout the chapters on hard coatings, microelectronics, display technology, optics, coatings on polymers

Keywords

condensation from a vapour Plasma and thermal activation thin film growth models non-equilibrium and equilibrium processes lon bombardment Film morphology and micrstructure wetting angle Ad-atoms

Learning Prerequisites

Recommended courses

Basics courses on thermodynamics, physics, and chemistry

Learning Outcomes

By the end of the course, the student must be able to:

- Describe thin film growth methodes
- Explain main mechanisms
- Categorize the different methods
- Propose mothods according to requirements
- Theorize on the effect of process parameters

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

ex cathedra exercices demonstrations

Assessment methods

Continuous assessment and oral exam

Yes

Yes

Supervision

Office hours Assistants

Resources

Bibliography Copies of foils Script on the web recommended books

Websites

• http://my.epfl.ch