Advanced	nanomaterials	

Hofmann Heinrich				
Cursus	Sem.	Туре	Language of	English
Materials Science and Engineering	MA1, MA3	Opt.	teaching	Ligist
Neuroprosthetics minor	Н	Opt.	Credits 2 Session Winter	
			Semester Exam Workload Weeks Hours Courses Number of positions	Fall During the semester 60h 14 2 weekly 2 weekly

Summary

MSE-477

The course gives a detailed explanain of the physical, chemical and thermodynamic effects which are unique for nanostructured materials. In a second part, different methods for synthesis and processing will be explained and important applications of nanomaterials will be presented.

Content

We will discuss the use of nanomaterials in electronics, optics, ceramics, magnetic and catalytic applications. We will attempt to relate properties of materials with respect to size of the building blocks.

- 1. Introduction
- 2. Atoms, clusters and nanomaterials
- 3. Preparation, synthesis
- chemical
- physical
- biomimetic
- 4. Properties of nanomaterials
- mechanic
- chemical
- magnetic
- optic
- electronic
- 5. Future applications

Keywords

nanotechnology, nanomaterial, nano

Learning Prerequisites

Required courses material science (Introduction, bachelor level)

Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate the different nanoeffects
- Elaborate the difference between bulk and nanosized materials
- Identify potential application of nanomaterials

• Discuss potential danger in handlig nanomaterials

Transversal skills

- Make an oral presentation.
- Collect data.
- Give feedback (critique) in an appropriate fashion.

Teaching methods

Ex cathedra and seminars

Expected student activities

oral presentation

Assessment methods

during the semester, based on the presentation

Supervision

Office hours	No
Assistants	No
Forum	No

Resources

Ressources en bibliothèque

• Copies d'articles

Notes/Handbook

http://ltp.epfl.ch/files/content/sites/ltp/files/shared/Teaching/Master/04-AdvancedNanomaterials/lectures/index.html