ε	Ρ	۶	L

CS-435	Analytic algorithms				
	Vishnoi Nisheeth				
Cursus		Sem.	Туре	Language of	English
Computer science		MA1, MA3	Opt.	teaching	Linglish
SC master EPFL		MA1, MA3	Opt.	Credits	4
				Session	Winter
				Semester	Fall
				Exam	During the semester
				Workload	120h
				Weeks	14
				Hours	3 weekly
				Courses	2 weekly
				Exercises	1 weekly
				Number of positions	

Summary

In the last decade, many fundamental algorithmic problems have benefited from viewing the underlying discrete problems through the lens of analytic methods. In this course we will introduce a selection of such techniques and explore their applications.

Content

- # Convexity, Gradient Descent and its variants
- # Multiplicative Weight Update method
- # Online convex optimization
- # Interior point methods for solving convex programs
- # Graphs, eigenvalues and Laplacians
- # Electrical and combinatorial flows
- # Conjugate Gradient Method
- # Graph Partitioning and Cheeger's Inequality
- # Ramanujan Graphs and Real Stable Polynomials
- # Applications

Keywords Convex optimization, Spectral methods

Learning Prerequisites

Required courses

Calculus (MATH105), Linear Algebra (MATH110), Algorithms (CS250), Theory of Computation (CS251) or equivalents.

Recommended courses Advanced Algorithms (CS-450)

Important concepts to start the course This is an advanced course and requires mathematical maturity including linear algebra, analysis, probability and algorithms.

Learning Outcomes

By the end of the course, the student must be able to:

- Learn fundamental techniques which apply continuous methods to discrete problems
- Apply analytic techniques to a variety of related problems
- Read, understand, and explain state of the art papers in this area

Assessment methods

Homeworks, Scribe Notes, Exam and Project/Presentation*. *Tentative

Resources

Bibliography

Books relevant to the course:

Vishnoi - Lx=b Nesterov - Introductory lectures on convex optimization Shalev-Schwartz - Online learning and online convex optimization Renegar - A mathematical view of interior point methods in convex optimization

References for Basics:

Apostol - Calculus I and II Strang - Linear algebra and its applications Boyd and Vanderberghe - Convex optimization Strogatz - Nonlinear dynamics and Chaos

Ressources en bibliothèque

- Convex optimization / Boyd
- Linear algebra and its applications / Strang
- Nonlinear dynamics and Chaos / Strogatz
- Gaussian Hilbert Spaces / Janson
- Introductory lectures on convex optimization / Nesterov
- Mathematical view of interior point methods in convex optimization / Renegar
- Lx=b / Vishnoi
- Calculus I / Apostol
- Calculus II / Apostol