

| Grundler Dirk                     |          |      |                     |                        |
|-----------------------------------|----------|------|---------------------|------------------------|
| Cursus                            | Sem.     | Туре | Language of         | English                |
| Materials Science and Engineering | MA2, MA4 | Opt. | teaching            | Linglish               |
|                                   |          |      | Credits             | 4                      |
|                                   |          |      | Session             | Summer                 |
|                                   |          |      | Semester            | Spring                 |
|                                   |          |      | Exam                | During the<br>semester |
|                                   |          |      | Workload            | 120h                   |
|                                   |          |      | Weeks               | 14                     |
|                                   |          |      | Hours               | 4 weekly               |
|                                   |          |      | Courses             | 2 weekly               |
|                                   |          |      | Exercises           | 2 weekly               |
|                                   |          |      | Number of positions |                        |

# Summary

Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities and are relevant for modern technologies ranging from e.g. wind energy harvesting via electric article surveillance to sensing and data storage.

# Content

The course explains the relation between properties of magnetic materials and their composition, structure, as well as the underlying preparation techniques.

1. Introduction to magnetic phenomena

- 2. Basic concepts of magnetic materials
- 3. Fabrication and synthesis techniques (bulk materials, thin films, nanoscale materials)

4. Electric, magnetic, mechanical, optical, and thermal properties depending on composition, structure, preparation technique

- 5. Figure-of-merits of magnetic materials in different technologies and performance tests
- 6. Applications (e.g. storage, electric article surveillance, nanosensors, biocompatibility)
- 7. Abundance of relevant elements and sustainability for future devices
- 8. Magnetic materials for beyond-CMOS research strategies

# Keywords

Spontaneous magnetism, magnetism of elements and alloys, invar, ferro-, ferri- and antiferromagnetic, saturation magnetization, magnetic anisotropies, stray field, demagnetization effect, reversible and irreversible switching processes, hysteresis, domain walls, dc and ac magnetic susceptibility, exchange interaction, dipolar forces, Ising model, Landau-Lifshitz-Gilbert equation, magnetoelastic coupling, exchange bias, spin polarization, spin waves and magnons, Delta-E effect, magnetoresistive random access memory, spin-transfer torque, heat-assisted recording, hard and soft magnets, magnetoelectronics (spintronics), magnetooptics

# **Learning Prerequisites**

## **Required courses**

Fundamentals of solid-state materials, Theory of materials: from structures to properties, Solid state physics (or equivalent), General Physics IV

# Important concepts to start the course

Concepts from General Physics IV and Solid-state materials/physics: angular momenta (orbital, spin), Hunds rule, spin orbit coupling, band structure

Learning Outcomes



By the end of the course, the student must be able to:

- Assess / Evaluate quantum mechanical aspects of magnetic technologies
- Optimize the resource-efficient usage of magnetic materials
- Apply micromagnetic simulations
- Categorize magnetic materials concerning costs and operation conditions
- Choose an appropriate fabrication method
- Justify strategies for novel magnetic devices

## **Transversal skills**

- Use a work methodology appropriate to the task.
- Communicate effectively, being understood, including across different languages and cultures.
- Use both general and domain specific IT resources and tools
- · Collect data.
- Take feedback (critique) and respond in an appropriate manner.
- Respect the rules of the institution in which you are working.

# **Teaching methods**

Ex cathedra, exercises, simulations, visit to laboratory, presentations of students

#### Expected student activities

Attendance at lectures, completing exercises, feedback via electronic means (e.g. speakup, clickers), performing simulations, report writing, presentation

#### Assessment methods

During the term (oral presentations, reports)

#### Supervision

| Office hours | Yes |
|--------------|-----|
| Assistants   | Yes |

## Resources

Bibliography

Available at library, eg. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, (2009); J.D. Coey, Magnetism and Magnetic Materials (2010). R.C. O'Handley, Modern magnetic materials: principles and applications (2000)

#### Ressources en bibliothèque

- Introduction to Magnetic Materials / Cullity
- Magnetism and Magnetic Materials / Coey
- Modern magnetic materials: principles and applications / O'Handley
- Fundamentals and Applications of Magnetic Materials / Krishnan

## Notes/Handbook

Please get a polling device (clicker) from the library (see link below) before the start of the lecture.

#### Websites

http://clickers.epfl.ch/students

# **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=15219

Prerequisite for Semester projects, Master thesis, PhD