Courses TP

Number of positions

EPFL

2 weekly

2 weekly

CS-208	Computer architecture
00 200	

Sto	ilovic	Miri	iana
310		IVIII	ana

otojno no miljana				
Cursus	Sem.	Туре	Language of	English
Communication systems	BA3	Obl. teaching	0 0	Linglish
Computer engineering minor	Н	Opt.	Credits Session	4 Winter Fall
Computer science minor	Н	Obl.	Semester	
Computer science	BA3	Obl.	Exam	During the
HES - IN	Н	Obl.	Workload	semester 120h
			Weeks	14
			Hours	4 weekly

Summary

The course introduces the students to the basic notions of computer architecture and, in particular, to the choices of the Instruction Set Architecture and to the memory hierarchy of modern systems.

Content

- Complex digital systems in VHDL.
- Basic components of a computer.
- Instruction Set Architectures.
- Assembly-level programming.
- Multi-cycle implementation of processors.
- Caches.
- Virtual memory.

Keywords

Computer Architecture, Basic Processor Architecture, Instructions Sets, Cache Hierarchies, Virtual Memory.

Learning Prerequisites

Required courses

• Conception de systèmes numériques

Learning Outcomes

By the end of the course, the student must be able to:

- Design and implement a processor at the Register Transfert Level using logic synthesizers and simulators.
- Develop assembly language programs.
- Justify the organization of a modern memory system including cache hierarchies and virtual memory..
- Design and implement a cache memory.

Teaching methods

Courses and labs on a dedicated FPGA board.

Assessment methods

Midterm exam and final exam.

Resources

Bibliography

David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Morgan Kauffman, 5th edition, 2013.

Ressources en bibliothèque

• Computer Organization and Design: The Hardware-Software Interface / Patterson

Prerequisite for

• Architecture des systems-on-chip.