# MATH-451 Numerical approximation of PDE's I

| Nobile Fabio                          |          |      |                     |                  |
|---------------------------------------|----------|------|---------------------|------------------|
| Cursus                                | Sem.     | Туре | Language of         | English          |
| Computational science and Engineering | MA2, MA4 | Opt. | teaching            | Linglish         |
| Financial engineering                 | MA2, MA4 | Opt. | Credits             | 5                |
| Mathematics                           | BA6      | Opt. | Session<br>Semester | Summer<br>Spring |
|                                       |          |      | Exam                | Written          |
|                                       |          |      | Workload            | 150h             |
|                                       |          |      | Weeks               | 14               |
|                                       |          |      | Hours               | 4 weekly         |
|                                       |          |      | Courses             | 2 weekly         |

#### Summary

The aim of the course is to give a theoretical and practical knowledge of finite difference and finite element methods for the numerical approximation of partial differential equations in one or more dimensions.

#### Content

- Finite difference methods for elliptic, parabolic and hyperbolic equations; stability and convergence analysis
- Linear elliptic problems: weak form, well-posedness, Galerkin approximation
- Finite element approximation in two and three dimensions: stability, convergence, a-priori error estimates in different norms, implementation aspects
- Transport dominated problems and stabilization techniques

### Keywords

Partial Differential Equations, Finite difference method, Finite element method, Galerkin approximation, convergence analysis.

### Learning Prerequisites

Required courses Analysis I-II-III-IV, Numerical analysis

### Recommended courses

Functional Analysis I, Introduction aux équations aux dérivées partielles, Measure and Integration, Programming

#### Important concepts to start the course

- Basic knowledge of functional analysis, Banach and Hilbert spaces, L^p spaces.
- Some knowledge on theory of elliptic PDEs, weak solutions, existence and uniqueness.
- Basic concepts in numerical analysis: stability, convergence, condition number, solution of linear systems, quadrature formulae, polynomial interpolation.

Learning Outcomes



2 weekly

Exercises Number of positions By the end of the course, the student must be able to:

- Choose an appropriate discretization scheme to solve a specific PDE
- Analyze numerical errors
- Interpret results of a computation in the light of theory
- Prove theoretical properties of discretization schemes
- Solve a PDE using available software
- State theoretical properties of PDEs and corresponding discretization schemes
- Describe discretization methods for PDEs

### **Transversal skills**

- Use a work methodology appropriate to the task.
- Use both general and domain specific IT resources and tools
- Write a scientific or technical report.

# **Teaching methods**

Ex cathedra lectures, exercises in the classroom and computer lab sessions

### **Expected student activities**

- Attendance of lectures
- Completing exercicies
- Solving simple problems on the computer

## Assessment methods

written exam. The exam may involve the use of a computer. Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

## Supervision

| Office hours | Yes |
|--------------|-----|
| Assistants   | Yes |
| Forum        | No  |

### Resources

Virtual desktop infrastructure (VDI) Yes

### **Bibliography**

- A.Quarteroni, Numerical Models for Differential Problems, Springer, 2009
- S.C. Brenner, L.R. Scott The Mathematical Theory of Finite Element Methods, Springer, 3rd ed, 2007
- A. Ern, J-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004
- Lecture notes by the teacher

### Ressources en bibliothèque

• The Mathematical Theory of Finite Element Methods / Brenner

• Theory and Practice of Finite Elements / Ern

# **Moodle Link**

• http://moodle.epfl.ch/

# Prerequisite for

Numerical Approximation of Partial Differential Equations II