positions

CS-341 Introduction to computer graphics

Pauly Mark				
Cursus	Sem.	Type	Language of	English
Communication systems minor	E	Opt.	teaching	English
Communication systems	BA6	Opt.	Credits Session Semester	6 Summer
Computer science minor	Е	Opt.		Spring
Computer science	BA6	Opt.	Exam	Written
Electrical and Electronical Engineering	MA2, MA4	Opt.	Workload Weeks	180h 14
			Hours	5 weekly
			Courses	2 weekly
			Exercises	1 weekly
			TP	2 weekly
			Number of	

Summary

The students study and apply fundamental concepts and algorithms of computer graphics for rendering, geometry synthesis, and animation. They design and implement their own interactive graphics programs.

Content

This course provides an introduction to the field of Computer Graphics. We will cover elementary rendering algorithms such as rasterization and raytracing, examine mathematical concepts and algorithms for geometric modeling, and then study concepts and algorithms for computer animation. Students will experiment with modern graphics programming and build small interactive demos. Complemented by some theoretical exercises, these programming tasks lead to a graphics software project, where small teams of students design and implement a complete graphics application.

Keywords

Pixels and images, 2D and 3D transformations, perspective transformations and visibility, rasterization, interpolation and lighting, OpenGL graphics API, raytracing, shader programming, texture mapping, procedural modeling, curves and surfaces, polygonal meshes, particle systems

Learning Prerequisites

Required courses

Nothing

Recommended courses

Linear Algebra

Learning Outcomes

By the end of the course, the student must be able to:

- Explain and apply the fundamental mathematical concepts of computer-based image and geometry synthesis
- Implement a basic rendering pipeline based on rasterization and raytracing
- · Design and implement geometry synthesis based on procedural modeling
- Design and implement basic computer animation algorithms
- Integrate individual components into a complete graphics application
- · Coordinate a team during a software project

Teaching methods

Lectures, interactive demos, theory and programming exercises, programming project, project tutoring

Expected student activities

The student are expected to study the provided reading material and actively participate in class. They should prepare and resolve the exercises, prepare and carry out the programming project. Exercises and project are done in groups of three students.

Assessment methods

Exercises and Project, Final Examination

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Bibliography

A list of books will be provided at the beginning of the class

Ressources en bibliothèque

• Polygon mesh processing / Botsch

Notes/Handbook

Slides and online resources will be provided in class

Websites

• http://lgg.epfl.ch/ICG

Prerequisite for

Advanced Computer Graphics