

2 weekly

Project

Number of positions

CS-473 Embedded systems

Beuchat René

Cursus	Sem.	Туре	l anguage of	English
Computer engineering minor	Н	Opt.	teaching Credits Session Semester Exam	Linglish
Computer science	MA1, MA3	Opt.		4 Winter Fall Oral
Electrical and Electronical Engineering	MA1, MA3	Opt.		
Mineur STAS Chine	Н	Opt.		
SC master EPFL	MA1, MA3	Opt.	Workload Weeks	120h 14
			Hours Courses	4 weekly 2 weekly

Summary

The main topics of this course are understanding and designing embedded system on a programmable circuit (FPGA). Students will be able to design a camera or a LCD controller on an FPGA in VHDL and will use their controller through a softcore processor.

Content

- Microcontrollers and their associated programmable interfaces (GPIO, Timer, SPI, A/D, PWM, interrupts)
- Hardcore/softcore processors (ie. NIOS II, ARM)
- Memory organizations, little/big endian
- Synchronous busses, dynamic bus sizing (ie. Avalon Bus in Memory Mapped mode)
- Processor busses, bussesrealized in a FPGA
- Serial busses(ie. UART, SPI, i2c, ...)
- How an LCD graphical screen and a CMOS camera work
- FPGA-based conception of Embedded Systems
- Embedded systems with processors on FPGAs

Laboratories provide knowledge & practice to develop an embedded system based on an FPGA device.

Keywords

microprocessors, microcontroller, FPGA, embedded systems, SoC, programmable interface

Learning Prerequisites

Required courses Introduction to computing systems, Logic systems, Computer architecture

Recommended courses Electronic, Programming (C/C++), Project System On Chip

Important concepts to start the course

- Computer architecture (processor, memory, programmable interfaces)
- Processor Architecture (PC, registers, ALU, instruction decoding, instruction execution)
- Knowledge of C programming language

Knowledge of VHDL

Learning Outcomes

By the end of the course, the student must be able to:

- Design an embedded system on an FPGA
- Analyze a specific problem to be solved and propose an FPGA-based system to solve it
- Implement a solution to the given problem
- Realize and simulate the design
- Test the developed solution on an FPGA
- Use complex development tools and hardware debugging tools such as a logic analyzer and an oscilloscope

Transversal skills

- Use a work methodology appropriate to the task.
- Negotiate effectively within the group.
- Set objectives and design an action plan to reach those objectives.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Use both general and domain specific IT resources and tools
- Make an oral presentation.

Teaching methods

Ex cathedra and exercises, laboratories by specific sub-topics, final mini-project

Expected student activities

- Reading and deepening of course concepts
- Preparation of exercises performed in the laboratory
- Writing reports on different labs
- Realization of a final mini-project by group with oral presentation, report and demonstration

Assessment methods

With continuous control. all labs 30%, mini-projet 20%, oral exam 50%

Supervision

Office hours	No
Assistants	Yes
Forum	Yes
Others	Course on Moodle with forum

Resources

Virtual desktop infrastructure (VDI) No

Bibliography

Teaching notes and suggested reading material on moodle Specialized datasheets (micro-controllers, FPGA) and standards(ie, SPI, i2c, Amba, Avalon, etc.)

Notes/Handbook

Documents and slides provided on moodle

Websites

• http://fpga4u.epfl.ch

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=1231

Prerequisite for CS-476 Real-time embedded systems