

# CS-423 Distributed information systems

| Aberer Karl                             |          |      |
|-----------------------------------------|----------|------|
| Cursus                                  | Sem.     | Type |
| Biocomputing minor                      | E        | Opt. |
| Communication systems minor             | Е        | Opt. |
| Computer science minor                  | E        | Opt. |
| Computer science                        | MA2      | Obl. |
| Data Science                            | MA2      | Opt. |
| Digital Humanities                      | MA2      | Opt. |
| Electrical and Electronical Engineering | MA2, MA4 | Opt. |
| Energy Management and Sustainability    | MA2, MA4 | Opt. |
| Environmental Sciences and Engineering  | MA2, MA4 | Opt. |
| SC master EPFL                          | MA2, MA4 | Obl. |

#### **Summary**

This course introduces in detail several key technologies underlying today's distributed information systems, including Web data management, information retrieval and data mining.

#### Content

Web Information Management: Semi-structured data - graph data model, web ontologies, schema integration

Information Search: Web search - vector space retrieval, inverted files, advanced retrieval models, word embeddings, web search

Big Data Analytics: Data mining - associations rules, clustering, classification, model selection; Crowd-sourcing; Recommender systems - collaborative filtering and content-based recommendation

## **Learning Prerequisites**

#### **Recommended courses**

Introduction to Database Systems

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Characterize the main tasks performed by information systems, namely data, information and knowledge management
- Apply semi-structured data models, their representation through Web standards and algorithms for storing and processing semi-structured data
- Apply fundamental models and techniques of text retrieval and their use in Web search engines
- Apply main categories of data mining techniques, local rules, predictive and descriptive models, and master representative algorithms for each of the categories
- Apply collaborative information management models, like crowd-sourcing, recommender systems, social networks

#### **Teaching methods**

Ex cathedra + exercises

#### **Assessment methods**



25% Continuous evaluations with bonus system during the semester 75% Final written exam (180 min) during exam session

## Supervision

Office hours Yes
Assistants Yes
Forum Yes

## Resources

## Websites

• http://lsir.epfl.ch/teaching/current-courses/

## **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=4051