

COM-417 Advanced probability and applications

Lévêque Olivier		
Cursus	Sem.	Туре
Computer and Communication Sciences		Obl.
Computer science	MA2	Opt.
Data Science	MA2	Opt.
SC master EPFL	MA2, MA4	Opt.

Language of teaching	English
Credits	6
Session	Summer
Semester	Spring
Exam	Written
Workload	180h
Weeks	14
Hours	5 weekly
Courses	3 weekly
Exercises	2 weekly
Number of	
positions	

Summary

In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorems), while the second part focuses on the theory of martingales in discrete time.

Content

- I. Probability
- sigma-fields, probability measures, random variables
- independence, expectation
- convergence of sequences of random variables
- laws of large numbers- central limit theorem
- concentration inequalities
- moments
- II. Martingales
- conditional expectation
- definition and properties of a martingale
- stopping times, optional stopping theorem
- maximal inequalities
- convergence theorems

Keywords

probability, measure theory, martingales, convergence theorems

Learning Prerequisites

Required courses

Basic probability course

Calculus courses

Recommended courses

complex analysis

Important concepts to start the course

This course is NOT an introductory course on probability: the students should have a good understanding and practice of basic probability concepts such as: distribution, expectation, variance, independence, conditional probability.

The students should also be at ease with calculus. Complex analysis is a plus, but is not required.

On the other hand, no prior background on measure theory is needed for this course: we will go through the basic concepts one by one at the beginning.

Learning Outcomes

By the end of the course, the student must be able to:

- Understand the foundations of probability theory
- Acquire a solid knowledge of martingale theory

Teaching methods

Ex cathedra + exercises

Expected student activities

active participation to exercise sessions

Assessment methods

Midterm 10%, homeworks 10%, exam 80%

Resources

Bibliography

Sheldon M. Ross, Erol A. Pekoz, A Second Course in Probability,1st edition, www.ProbabilityBookstore.com, 2007.

Jeffrey S. Rosenthal, A First Look at Rigorous Probability Theory,2nd edition, World Scientific, 2006. Geoffrey R. Grimmett, David R. Stirzaker, Probability and Random Processes,3rd edition, Oxford University Press, 2001.

Richard Durrett, Probability: Theory and Examples,4th edition, Cambridge University Press, 2010.

Ressources en bibliothèque

- · A Second Course in Probability / Ross
- Probability: Theory and Examples / Durrett
- Probability and Random Processes / Grimmett
- A First Look at Rigorous Probability Theory / Rosenthal

Notes/Handbook

available on the course website

Websites

• http://ipgold.epfl.ch/~leveque/Advanced_Prob/

Prerequisite for

Advanced classes requiring a good knowledge of probability