MICRO-512 Image processing II

Unser Michaël, Van De Ville Dimitri

		_		
Cursus	Sem.	Туре	Language of	English
Biocomputing minor	E	Opt.	teaching	Linghon
Bioengineering	MA2, MA4	Opt.	Credits Session	3 Summer Spring Written 90h 14 3 weekly 3 weekly
Computational Neurosciences minor	E	Opt.	Semester	
Computational science and Engineering	MA2, MA4	Opt.	Exam	
Computer science	MA2	Opt.	Workload Weeks	
Digital Humanities	MA2	Opt.	Hours	
Microtechnics	MA2, MA4	Opt.	Courses	
Neuroprosthetics minor	E	Opt.	Number of positions	
SC master EPFL	MA2, MA4	Opt.		
Sciences du vivant	MA2, MA4	Opt.		

Summary

Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in JAVA; application to real-world examples in industrial vision and biomedical imaging.

Content

• Review of fundamental notions. Multi-dimensional Fourier transform. Convolution. z-transform. Digital filters.

• **Continuous representation of discrete data.** Splines. Interpolation. Geometric transformations. Multi-scale decomposition (pyramids and wavelets).

• Image transforms. Karhunen-Loève transform (KLT). Discrete cosine transform (DCT). JPEG coding. Image pyramids. Wavelet decomposition.

• **Reconstruction from projections.** X-ray scanners. Radon transform. Central slice theorem. Filtered backprojection. Iterative methods.

• Deconvolution. Inverse and Wiener filtering. Matrix formulations. Iterative techniques (ART).

• Statistical pattern classification. Decision making. Bayesian classification. Parameter estimation. Supervised learning. Clustering.

• Image analysis. Pixel classification. Contour extraction and representation. Shape. Texture. Snakes and active contours.

Learning Prerequisites Required courses Image Processing I

Recommended courses Signals and Systems I & II, linear algebra, analysis

Important concepts to start the course Basic image processing and related analytical tools (Fourier transform, z-tranform, etc.)

Learning Outcomes

By the end of the course, the student must be able to:

- Construct interpolation models and continuous-discrete representations
- Analyze image transforms
- Design image-reconstruction algorithms
- Formalize multiresolution representations using wavelets
- Design deconvolution algorithms
- Perform image analysis and feature extraction
- Design image-processing software (plugins)
- Synthesize steerable filters

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Manage priorities.
- Access and evaluate appropriate sources of information.
- Use both general and domain specific IT resources and tools