PHYS-411 Physics of atoms, nuclei and elementary particles

Nakada Tatsuya				
Cursus	Sem.	Туре	Language of	English
Ingphys	MA1, MA3	Opt.	teaching	Linglish
Nuclear engineering	MA1	Opt.	Credits	4
Physicien	MA1, MA3	Opt.	Session Semester	Winter Fall
			Exam	Oral
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of positions	

Summary

In this lecture, symmetry and conservation law are applied to derive wave functions for elementary particles. Relativistic wave functions are analysed and applied for massive and massless particles. Different ideas on antiparticles are explored.

Content

- Introduction to general concepts commonly used in atomic, nuclear and elementary particle physics.

- Symmetry principles.
- Description of forces.
- Scaler, spinor and vector field
- Relativic wave function

Learning Prerequisites

Required courses Quantum Mechanics Electrodynamics Special relativity

Recommended courses Nuclear and particle physics

Important concepts to start the course Symmetry and conservation Lorentz invariance Spin and statistics

Learning Outcomes

By the end of the course, the student must be able to:

- Sketch the basic concept of symmetry and conservation law
- Apply various hypothesises to a given problem

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedra, exercises in class and assignment presentation

Expected student activities

Solving problems given as excersises

Assessment methods Evaluating the Interaction during the courses

Resources

Notes/Handbook Lecture notes and problems are haded out prior to the course