

Butté Raphaël				
Cursus	Sem.	Туре	Language of	Englis
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching Credits Session Semester	4 Winter Fall
Ingphys	MA1, MA3	Opt.		
Physicien	MA1, MA3	Opt.		
			Exam	Written
			Workload	120h
			Weeks	14
			Hours	4 weel

Summary

Series of lectures encompassing the fundamentals of semiconductors and the description of the main microelectronic devices built from semiconductors going from the p-n junction to the MOSFETs, which are at the heart of the CMOS-technology with an emphasis on downscaling issues.

Content

1. Electronic properties of semiconductors

- Crystalline structures and energy band diagrams
- Impurities and doping
- Carrier statistics in equilibrium and out-of-equilibrium
- Electron transport in weak and strong fields
- Generation and recombination processes

2. Theory of junctions and interfaces

- p-n and metal-semiconductor junctions
- Oxide-semiconductor and heterojunction interfaces
- Principles of bipolar transistor operation

3. Field effect devices

- MESFET, MOSFET and HEMT transistors
- Downscaling principles
- Submicron devices

Learning Prerequisites

Recommended courses Introduction Solid State Physics

Learning Outcomes

By the end of the course, the student must be able to:

- Argue
- Contextualise
- Sketch
- Synthesize
- Generalize
- Structure
- Propose

EPFL

2 weekly

2 weekly

Courses

Exercises Number of positions Assess / Evaluate

Transversal skills

- Use a work methodology appropriate to the task.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Take feedback (critique) and respond in an appropriate manner.
- Communicate effectively with professionals from other disciplines.

Teaching methods

Ex cathedra with exercises

Expected student activities

Read the bibliographical ressources in order to fully integrate and properly use the physical concepts seen in the lectures and the exercices

Be able to generalize the above-mentioned concepts to a wide variety of systems/devices

Assessment methods

written exam (100%)

Resources

Bibliography

S. M. Sze, "Physics of semiconductor devices" 2nd edition (John Whiley & Sons, New York, 1981) P. Y. Yu & M. Cardona, "Fundamentals of Semiconductors, Physics and Materials Properties" 2nd edition (ou > 2nd ed.) (Springer, Berlin, 1999) N. W. Ashcroft and N. D. Mermin, "Solid State Physics" (Saunders College Publishing, Fort Worth, 1976)

Ressources en bibliothèque

- Fundamentals of Semiconductors / Yu
- Physics of semiconductor devices / Sze
- Solid State Physics / Ashcroft