

11110 407	FIOILIEIS III Halloscielices			
	Kern Klaus, Lingenfelder Magalí, Ruspo	ni Stefan	0	
Cursus	Sem.	Туре	Language of	English
Ingphys	MA1, MA3	Opt.	teaching	Ligist
Physicien	MA1, MA3	Opt.	Credits Session	4 Winter
			Semester	Fall
			Exam	Oral
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of positions	

PHYS-407 **Frontiers in nanosciences**

Summary

The students understand the relevant experimental and theoretical concepts of the nanoscale science. The course move from basic concepts like quantum size effects to ##hot fields## such as spin transport for data storage applications (spintronics), carbon electronics, or nanocatalysis.

Content

1. Introduction to the concepts of nanoscale science

- 2. The art of making nanostructures:
- a. Bottom-up assembly
- b. Top-down fabrication
- 3. Quantum structures and devices:
- a. Current at the nanoscale
- b. Quantum technology
- 4. Carbon nanotechnology:
- a. From fullerenes to graphene
- b. Molecular electronics and machines
- 5. Microscopy and manipulation tools:
- a. Electron microscopy
- b. Scanning probe microscopy: STM, AFM, MFM
- 6. Spectroscopy tools:
- a. Electron and photon spectroscopy: XPS, XAS, Auger
- b. Electron and photon diffraction: LEED, TEM, SXRD
- c. Synchrotron radiation
- 7. Magnetism at the nanoscale:
- a. Orbital and spin magnetic moment
- b. Superparamagnetic limit in magnetic data storage
- 8. From electronics to spintronics:
- a. 2D electron gas at heterogeneous semiconductor interfaces
- b. Single electron transistor
- c. Spin transport: spin valve, GMR and TMR effects

Learning Prerequisites

Recommended courses

Solid state physics

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the differences between nanoscopic and macroscopic scale
- Analyze the results of a scientific experiment
- Design a scientific experiment

Transversal skills

- Summarize an article or a technical report.
- Access and evaluate appropriate sources of information.
- Use a work methodology appropriate to the task.

Teaching methods

Ex cathedra with visiting of laboratories at EPFL and the Max-Planck-Institute for Solid State Research in Stuttgart, Germany

Assessment methods

oral exam (100%)

Resources

Ressources en bibliothèque

- Quantum Transport, Atom to Transistor / Datta
- Physics of surfaces and interfaces / Ibach
- Surfaces and interfaces of solids / Lüth
- Introduction to Nanoscience / Lindsay
- Physics at surfaces / Zangwill

Websites

• http://moodle.epfl.ch/course/view.php?id=7781