BIO-382 Neuroscience for engineers

Blanke Olaf				
Cursus	Sem.	Туре	Language of	English
Life Sciences Engineering	BA6	Opt.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	English 4 Summer Spring Written 120h 14 4 weekly 2 weekly 2 weekly

Summary

This optional course provides students who consider a specialization in Neuroengineering during their Master with a very broad overview of the many practical applications in the field. It should ensure these students to be well informed when choosing their specialization.

Content

• General Introduction & Visual system (Blanke) Exercises: To virtual reality (Blanke)

• Vision: Perception, Neurophysiology, Neuroimaging (Herzog) Exercises: Computer Vision (Herzog)

• Hodgkin-Huxley model: from Ion channels to Mathematics (Gerstner) Exercises: Neuron modelling (Gerstner)

• Large scale modelling of the brain (Markram) Exercises: Blue Brain (Schürmann)

• Systems: Audition(BMI professor) Exercises: Cochlear Implants (External)

• Systems: Somatosensation and Optogenetics (Petersen) Exercises: Optogenetics (Petersen)

• Systems: Motor (Luthi-Carter) Exercises: Parkinson's and Huntington Disease, ALS (Moore)

Neuroprosthetics: Artificial Arms (Blanke)

Exercises: Neuroprosthetics (Blanke)

• Neuroprosthetics: BCI and EEG (Blanke) Exercises: Brain-Computer Interface (Millan)

• Brain metabolism and Neuroimaging(Magistretti) Exercises: Physics of Brain imaging (Gruetter)

MRI in humans(Hadjikhani)

Exercises: Diffusion Tensor Imaging (Thiran)

• Memory(Sandi) Exercises: Memory (Sandi)

• Alzheimer Disease (Fraering) Exercises: Therapeutic interventions (Fraering)

• Language and Summary (Blanke) Exercises: Aphasia (Blanke)

Resources

•

Ressources en bibliothèque