MSE-462 Powder technology

Bowen	Paul.	Derlet	Peter

20110111 0.001, 2011011	0101			
Cursus	Sem.	Туре	Language of	English
Materials Science and Engineering	MA1, MA3	Opt.	teaching	LIIGIISII
			Credits	2
			Session	Winter
			Semester	Fall
			Exam	Oral
			Workload	60h
			Weeks	14
			Hours	2 weekly
			Courses	2 weekly
			Number of	
			positions	

Summary

Most materials e.g. ceramics, metals, polymers or concrete pass during their processing one or more steps in powders. This course discusses and presents the science & technology of important powder processing steps like compaction, dispersion, sintering and novel densification technologies.

Content

• Theoretical and empirical models for powder packing and compaction including disctete element modelling (DEM) (examples for ceramics and metals)

• Particle- particle interactions (colloidal chemistry, DLVO theory, non-DLVO forces, polymer adsorption, colloidal stability assessment). Examples from cement and concrete, landslides, ceramic powder granulation, paper coating.

• Introduction to atomistic modelling - with examples from grain boundary segregation of dopants in ceramics, polmyer adsorption and cyrstal growth

• Sintering mechanisms (metal, ceramics, influence of the microstructure, simulation)

· Novel technologies (includes rapid prototyping)

• The support material for the course are copies of the slides used to present the course along with a few key text books and review articles - which the students are encouraged to use to supplement the documents provided.

Keywords

powder technology, sintering, compaction, modelling, cement, ceramics, metals, colloidal dispersion

Learning Prerequisites Recommended courses Ceramics, Ceramic processing, material science

Important concepts to start the course microstructure property relationships

Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate the use of different modelling methods in powder technology
- Model the stability of a colloidal dispersion
- Describe the different sintering methods used in powder technology
- Explain the limitations of classical DLVO theory
- Give an example in detail of the importance of powder characteristics in an everyday example of the application of powder technology
- Discuss powder compaction in detail

Teaching methods

lectures

Assessment methods

Oral exam

Supervision

Office hours	No
Assistants	No
Forum	No

Resources

Ressources en bibliothèque

Powder Metallurgy Science / German

Notes/Handbook

see http://ltp.epfl.ch/page-35623-en.html chapter "Powder technology"

Websites

• http://ltp.epfl.ch/page-35623-en.html