

MATH-457 **Numerical approximation of PDE's II**

Picasso Marco			
Cursus	Sem.	Type	Language of
Computational science and Engineering	MA2, MA4	Opt.	teaching
Ingmath	MA2, MA4	Opt.	Credits Session
Mathematics for teaching	MA2, MA4	Opt.	Semester
Mathématicien	MA2, MA4	Opt.	Exam
			Workload Weeks

Language of	English
teaching	
Credits	5
Session	Summer
Semester	Spring
Exam	Oral
Workload	150h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

A priori and a posteriori error estimates of numerical methods for elliptic, parabolic and hyperbolic pdes. Adaptive algorithms.

Content

- Elliptic pdes with finite elements:
- Diffusion problems: a posteriori error estimates in the natural H1 norm, in the L2 norm, goal oriented, adaptive algorithms.
- Extensions to Stokes problem, optimal control and nonlinear problems.
- · Parabolic pdes:
- The heat equation: functional setting, space and time discretization, a posteriori error estimates, adaptive algorithms.
- Extension to nonlinear problems.
- Hyperbolic pdes: space discretization, a posteriori error estimates for the transport equation and the wave equation.

Learning Prerequisites

Recommended courses

Analysis I and II, Numerical analysis, Introduction to the finite elements methods, Numerical approximation of partial differential equations I

Learning Outcomes

By the end of the course, the student must be able to:

- Expound the methods presented during the course and exercices
- Implement these methods in specific examples

Teaching methods

Ex cathedra lecture and exercises in the classroom

Assessment methods

Oral exam

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.