

Lacour Stéphanie

Cursus	Sem.	Туре	Language of	English
Bioengineering	MA1, MA3	Opt.	teaching	English
Biomedical technologies minor	н	Opt.	Credits Session Semester Exam	3 Winter Fall Written
Electrical and Electronical Engineering	MA1, MA3	Opt.		
Microtechnics	MA1, MA3	Opt.		
Neuroprosthetics minor	н	Opt.	Workload Weeks	90h 14
			Hours	3 weeklv

Summary

The course is an introduction to the emerging field of flexible (bio)electronics. It will provide an overview of the materials and processes used to design and manufacture flexible circuits and sensors. Applications encompass flexible displays, human-machine interfaces and neuroprosthetics.

Content

Because of the interdisciplinarity nature of the subject, the course content includes concepts from many disciplines in engineering (electrical, material sciences, mechancial, bio- and biomedical engineering). *Detailed content:*

- 1. Introduction: what is flexible (bio)electronics?
- 2. Materials properties
 - 1. Substrates
 - 2. Active device materials (inorganic and organic materials)
 - 3. Coatings and encapsulation
- 3. Micro/nanofabrication on polymer substrates
 - 1. Vacuum based techniques
 - 2. Printing
- 4. Thin-film electronic devices
 - 1. Thin-film transistors
 - 2. LEDs, OLEDs
 - 3. Microsensors
 - 4. Performance under mechanical bending (flexibility)
- 5. Biosensors on foil
 - 1. Biocompatibility, sterilization
 - 2. Smart catheters
- 6. Microelectrode arrays for neural interfaces neuroprosthetics
 - 1. In vitro platforms
 - 2. Implantable electrodes

Throughout the course, examples of current industrial and academic applications for mechanically compliant electronics will be given.

Keywords

Polymers, thin-films, devices, cleanroom technology, displays, neuroprosthetics, sensors.

Learning Prerequisites

Recommended courses Sensors Microfabrication

3 weekly

Courses

Number of positions

Important concepts to start the course Semiconductor devices microfabrication

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the operating principles of thin film transistors
- Predict mechanical and electro-mechanical behavior of thin films under mechanical loading
- Derive simple process flow
- Estimate typical failure strain in thin fim devices
- Advise on materials to design and fabricate bioelectronic devices

Transversal skills

- Make an oral presentation.
- Summarize an article or a technical report.
- Write a scientific or technical report.

Teaching methods

Lectures Team project Seminar(s) given by external speaker(s)

Expected student activities

attendance at lecturesassess propopsed litteratureproject presentation and report

Assessment methods

oral (50%)project (50%)

Resources

Bibliography

• Flexible Electronics: Materials and Applications (Electronic Materials: Science & Technology) by William S. Wong and Alberto Salleo (Paperback - Dec 8, 2010) Springer, 480pp Liens Moodle

• Materials Science and Engineering: An Introduction by William D. Callister (Author), David G. Rethwisch (Author) January 5, 2010, Wiley 992pp.

• J. H. Martin et al., in Principles of Neuroscience, edited by E. R. Kandel, J.H.Schwartz, and T. J. Jessel (Norwalk: Appleton and Lange, 2000), p. 340-352.

• ¿Fundamentals of microfabrication¿ 2nd or 3rd edition by M.J. Madou

Ressources en bibliothèque

Materials Science and Engineering / Callister

- Fundamentals of microfabrication / Madou
- Principles of Neuroscience / Kandel
- Flexible Electronics/ Wong

Notes/Handbook Lectures slides