MICRO-402 Modeling and simulation of microsystems

	Quack Niels, Shea Herbert				
Cursus		Sem.	Туре	Language of	English
Microtechnics		MA1, MA3	Obl.	teaching	Linglish
Microtechnics		MA1, MA3	Opt.	Credits	3 Winter
				Semester	Fall
				Exam	Oral
				Workload	90h
				Weeks	14
				Hours	3 weekly
				Courses	1 weekly
				Exercises	2 weekly
				Number of	

Summary

Students will learn how to analyze a problem, identify the relevant parameters, build a simple model and/or a more complex discretized problem, solve it using computing power and extract the relevant parameters from the simulation.

Content

Part 1. 1 degree of freedom system

- Static deformation of a spring-mass
- Dynamic deformation
- Dynamic deformation with a non sinusoidal drive
- Dynamic deformation with a non-linear stiffness

Part 2. Lump model & Equivalent circuit

- Mechanical resonator
- Electro-mechanical resonator
- Thermal conductance

Part 3. Finite Element Modelling

- Static mechanical deformation
- Surface stress effects on micro-structures
- Thermal simulation
- Electrothermal simulation
- Electro-thermo-mechanical simulation

Keywords

Simulation, Modelling, Finite element, Runge-Kutta, Mesh, Convergence, Multi-physics

Learning Prerequisites

Required courses

positions

Basic electronics and physics

Important concepts to start the course

Learning Outcomes

By the end of the course, the student must be able to:

- Choose the appropriate approach to modelling a simple device
- Identify relevant parameters in a system
- Design the model describing the system
- Interpret predictions and results from the model
- Choose the appropriate boundary conditions
- Choose the appropriate mesh size with respects to the physics of the problem

Teaching methods

Ex-Cathedra Exercises on a computer using Matlab, QUCS and a FEM software Project work in small groups

Expected student activities

Assessment methods

Oral exam - 50% Project - 50%

Supervision

Office hours	Yes
Assistants	No
Forum	No
Others	