

# MICRO-520 Laser microprocessing

Hoffmann Patrik Willi

| Cursus        | Sem.     | Type |
|---------------|----------|------|
| Microtechnics | MA2, MA4 | Opt. |

Language of English teaching Credits Summer Session Semester Spring Exam Oral Workload 60h Weeks 14 2 weekly Hours 2 weekly Courses Number of positions

## **Summary**

The physical principles of laser light materials interactions are introduced with a large number of industrial application examples. Materials processing lasers are developing further and further, the lecture presents the physical limitations of the processes.

#### Content

1. Basics of laser processing

Lasers for machining, Optics - beam steering systems, beam quality; Optical properties of materials, Heat equation, Applications - and examples:

Laser induced chemical reactions at surfaces for marking applications,

laser bending,

hole drilling,

laser cutting,

laser induced ablation,

gnerative processes

#### Keywords

laser, efficiency, beam quality, spot size, laser pulse duration, heat equation, losses, machining, marking, bending, drilling, cutting, ablation, generative processing, selective laser sintering, selective laser melting

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Decide which laser to use for which task
- Interpret the result of a laser processed sample
- · Optimize a virtual laser process

#### **Expected student activities**

participate actively in the lecture carry out exercises

### **Assessment methods**

Oral examination

Laser microprocessing Page 1 / 1