

2 weekly

1 weekly

Courses

Exercises

Number of positions

ME-425 Model predictive control

		-	
Jor	nes	Co	lin

Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA2, MA4	Opt.	teaching	English
Energy Management and Sustainability	MA2, MA4	Opt.	Credits	3 Summor
Mechanical engineering	MA2, MA4	Opt.	Semester	Spring
Microtechnics	MA2, MA4	Opt.	Exam	Written 90h 14
Systems Engineering minor	E	Opt. Workload Weeks	Workload Weeks	
			Hours	3 weekly

Summary

Provide an introduction to the theory and practice of Model Predictive Control (MPC). Main benefits of MPC: flexible specification of time-domain objectives, performance optimization of highly complex multivariable systems and ability to explicitly enforce constraints on system behavior.

Content

- Review of convex optimization and required optimal control theory.
- Receding-horizon control for constrained linear systems.
- Practical issues: Tracking and offset-free control of constrained systems.
- Theoretical properties of constrained control: Constraint satisfaction and invariant set theory, Stability of MPC.
- Introduction to advanced topics in predictive control.
- Simulation-based project providing practical experience with MPC.

Keywords

Multi-variable control, Constrained systems, Model-based Control, Optimization

Learning Prerequisites

Required courses

• Automatique or Control Systems

Recommended courses

• Multivariable systems or Dynamic coordination

Important concepts to start the course

- State-space modeling
- Basic concepts of stability
- Linear quadratic regulation

Learning Outcomes

2017-2018 COURSE BOOKLET

By the end of the course, the student must be able to:

- Design an advanced controller for a dynamic system, A13
- Assess the stability, performance and robustness of a closed-loop system, A14
- Validate the performance (by simulations or experiments) of a mechatronic system, A24
- Evaluate and discuss the performance and the solutions, and draw conclusions, A26

Transversal skills

• Write a scientific or technical report.

Teaching methods

Lectures, exercises and course project

Expected student activities

- Participate in lectures, exercises and course project
- Homework of about 2 hours per week

Assessment methods

- Reports on weekly exercises
- Report on simulation-based project
- Written mid-term exam
- Written final exam

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Bibliography

All material can be downloaded from the moodle site. Printed versions of the lecture notes can be ordered.

Websites

http://la.epfl.ch/teaching/mpc

Moodle Link

http://moodle.epfl.ch/course/view.php?id=13231