

MSE-479 Introduction to nanomaterials

Tileli Vasiliki			
Cursus	Sem.	Type	Language
Bioengineering	MA1, MA3	Obl.	teaching
Biomedical technologies minor	Н	Opt.	Credits Session
Chimiste	MA1, MA3	Opt.	Semester
			Exam
			\/\/a=\ \ a=a

Language of teaching	English
Credits	2
Session	Winter
Semester	Fall
Exam	During the
	semester
Workload	60h
Weeks	14
Hours	2 weekly
Courses	2 weekly
Number of	
positions	

Summary

This course is aimed to introducing students with a minimum background in materials science into the physical concepts of the uniqueness of the materials when reduced to the nanometer scale. An overview of nanomaterials on the synthesis, properties, characterization, and applications will be given.

Content

- 1. Introduction: Emergence, Definitions, Challenges
- 2. Synthesis methods
- 3. Properies: Optics, Magnetism, Thermal, Electrical, Mechanical
- 4. Applications
- 5. Characterization

Keywords

nanomaterials, nanosize effects, nanotechnology

Learning Prerequisites

Recommended courses

Basic knowledge in chemistry, physics, thermodynamics

Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate the difference between bulk and nanosiced materials
- Explain typical synthesis method fro nanomaterials
- Assess / Evaluate existing potential application of nanomaterial
- Explain the physical, chemical and thermodynamic behaviour of nanoparticles

Transversal skills

- Make an oral presentation.
- Demonstrate the capacity for critical thinking
- · Summarize an article or a technical report.

Teaching methods

Lectures and presentations from students

Expected student activities

An oral presentation regarding subjects on nanomaterials for biological, energy, or environmental applications, and a written report on a peer-reviewed journal article.

Assessment methods

50% in-class presentation 40% written asignment 10% in-class participation

Supervision

Office hours No
Assistants No
Forum No