

1 weekly

Exercises Number of positions

# Hydropower plants: generating and pumping units

| Avellan François                        |          |      |                     |                |
|-----------------------------------------|----------|------|---------------------|----------------|
| Cursus                                  | Sem.     | Туре | Language of         | English        |
| Electrical and Electronical Engineering | MA1, MA3 | Opt. | teaching            | Linglish       |
| Energy Management and Sustainability    | MA1, MA3 | Opt. | Credits             | 2              |
| Energy minor                            | Н        | Opt. | Session<br>Semester | Winter<br>Fall |
|                                         |          |      | Exam                | Written        |
|                                         |          |      | Workload            | 60h            |
|                                         |          |      | Weeks               | 14             |
|                                         |          |      | Hours               | 2 weekl        |
|                                         |          |      | Courses             | 1 weekly       |
|                                         |          |      |                     |                |

#### Summary

EE-456

Master Lecture on the general layout of a hydropower plant. Detailing the specification of Pelton, Francis, Kaplan and Bulb turbines, Storage pumps and Reversible pump-turbines.

#### Content

- Introduction to hydropower
- layout of hydropower plants. storage and run-of-the river power plant
- Electricity Data
- Integrating new renewable energy with pumped storage power plants
- Type of Machines
- Global quantities and Energy losses
- Power balance
- Velocity triangles and Euler equation
- Turbine and Pump hydraulic Characteristics
- Model Testing

### **Keywords**

Hydropower plant, hydraulic Turbine, storage pump and pump-turbine

Learning Prerequisites

**Required courses** 

Introduction to electrical engineering, Physics Conversion d'énergie

### Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate Capacity of a Hydropower Plant
- Specify the type of generating or pumping unit

### Transversal skills

- Use a work methodology appropriate to the task.
- Set objectives and design an action plan to reach those objectives.

### **Teaching methods**

ex cathedra lectures with working case studies and exercices

#### **Expected student activities**

attendance at lectures completing exercises and reading written material

#### **Assessment methods**

written exam

## Resources

Ressources en bibliothèque

- Turbomachines hydrauliques / Henry
- Cavitation / Franc

Notes/Handbook slides handout

# **Prerequisite for**

Electromechanical conversion master project