

Sallese Jean-Michel				
Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching	LIIGIISII
			Credits	2
			Session	Winter
			Semester	Fall
			Exam	Written
			Workload	60h
			Weeks	14
			Hours	2 weekly
			Courses	2 weekly
			Number of	
			positions	

Summary

The course aims at modelling the most relevant semiconductor devices that will be used in nanoelectronics, such as multigates and junction-less transistors. Starting from the basis, we will focus on various analytical approaches in order to explain in detail how these devices work.

Content

- Introduction.
- Basics of MOSFETs
- Alternative modeling of MOSFETs
- Modelling the Double Gate FET
- Charge based Modelling of the DG FET
- Quantum Confinement in DG FET
- The Gate All Around nanowire FET
- Concepts of Equivalent Parameters in MUGFET
- Charge based modelling of the Junction Less FET: double gate and nanowire
- Concept of Ballistic Transport in nanoscaled transistors
- Is the ballistic FET a vacuum tube ?
- The contact resistance in nano devices
- A simple picture of transport in 'molecules'

Learning Prerequisites

Important concepts to start the course Basic knowledge on semiconductors

Learning Outcomes

By the end of the course, the student must be able to:

- Systematize a problem involving semiconductors
- Analyze a semiconductor device
- Synthesize infomation

Transversal skills

- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Demonstrate the capacity for critical thinking

Teaching methods

Lectures Exercices

Expected student activities

Solve some basic exercices

Assessment methods

Written exam

Supervision

Office hours	Yes
Assistants	Yes