Ξ	P	۶	L

EE-451	Image analysis and pattern recognition						
	Thiran Jean-Philippe						
Cursus		Sem.	Туре	Language of	English		
Bioengineering		MA2, MA4	Obl.	teaching	English		
Data Science		MA2	Opt.	Credits	4		
Electrical and Elec	tronical Engineering	MA2, MA4	Obl.	Session Semester Exam	Summer Spring During the semester		
				Workload Weeks Hours Courses TP Number of positions	120h 14 4 weekly 2 weekly 2 weekly		

Summary

This course gives an introduction to the main methods of image analysis and pattern recognition.

Content

Introduction

Digital image acquisition and properties. Pre-processing: geometric transforms, linear filtering, image restoration. Introduction to Mathematical Morphology Examples and applications

Segmentation and object extraction

Thresholding, edge detection, region detection. Segmentation by active contours. Applications in medical image segmentation.

Shape representation and description

Contour-based representation, region-based representation. Morphological skeletons

Shape recognition

Statistical shape recognition, Bayesian classification, linear and non-linear classifiers, perceptrons, neural networks and unsupervised classifiers. Applications.

Practical works on computers

Learning Prerequisites

Recommended courses

Introduction to signal processing, Image processing

Learning Outcomes

By the end of the course, the student must be able to:

- Use Image pre-processing methods
- Use image segmentation methods
- Choose shape description methods appropriate to a problem
- Use classification methods appropriate to a problem

Transversal skills

- Use a work methodology appropriate to the task.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Make an oral presentation.
- Summarize an article or a technical report.

• Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.

Teaching methods

Ex cathedra and practical work and oral presentation by the students

Assessment methods

Continuous control

Resources

Ressources en bibliothèque

- Reconnaissance des formes et analyse de scènes / Kunt
- Image Processing, Analysis and Machine Vision / Sonka

Prerequisite for Semester project, Master project, doctoral thesis