Energy Management and Sustainability

ME-454	Modelling and optimization of energy systems				
	Maréchal François				
Cursus		Sem.	Туре	Language of	

MA2, MA4

Е

Opt. Opt.

> S Ε

ł

Ķ

MA2, MA4	Opt.
MA2, MA4	Opt.
E	Obl.
E	Opt.
	MA2, MA4

anguage of	English		
Credits	4		
Session	Summer		
Semester	Spring		
Exam	Oral		
Norkload	120h		
Neeks	14		
Hours	4 weekly		
Courses	2 weekly		
Exercises	2 weekly		
Number of			
positions			

Summary

Energy minor

The goal of the lecture is to present and apply techniques for the modelling and the thermo-economic optimisation of industrial process and energy systems. The lecture covers the problem statement, the solving methods for the simulation and the single and multi-objective optimisation problems.

Content

- Concepts of Computer Aided Process System Engineering methods to tackle the problems of energy conversion systems modelling and optimisation. The students will acquire a methodology to state the problem, identify the solving procedure, solve the problem and analyse the results;

- Definition of the basic system modelling concepts : state variables, energy and mass balances, simulation parameters and equations, degree of freedom analysis, different types of specifications, inequalities, objective functions;

- Energy systems equipments models;

- System models : flowsheets, degrees of freedom, sequential or simultaneous solving approach, numerical methods and their implications;

- Measurement data reconciliation and parameter identification;

- Calculating systems performances : operating cost, efficiency, environmental impact, investments, thermo-economic and environomic performances;

- Stating and solving optimization problems : decision variables, objective functions and constraints, solving strategies, numerical methods and their implications;

- Realization of a case study.

Keywords

Process system engineering, Process simulation, optimization

Learning Prerequisites

Recommended courses

Prerequisite skills

- Master the concepts of mass, energy, and momentum balance, E1 (Thermodynamique et énergétique I)
- Compute the thermodynamic properties of a fluid, E2 (Thermodynamique et énergétique I)
- Master the concepts of heat and mass transfer, E3 (Heat and mass transfer)
- Understand the main thermodynamic cycles, E5 (Thermodynamique et énergétique I)
- Notion of optimization (Introduction à l'optimisation différentiable)

By the end of the course, the student must be able to:

- Master the concepts of thermodynamic efficiency, E6
- Establish the flow diagram of an industrial process a nd calculate the corresponding energy and mass balance, E22
- Analyse the energy and exergy efficiency of industrial energy systems, E23
- Model, design and optimize energy conversion systems and ind ustrial processes, E24

Transversal skills

- Write a scientific or technical report.
- Make an oral presentation.
- Keep appropriate documentation for group meetings.
- Access and evaluate appropriate sources of information.

Teaching methods

The course is organised as theoretical sessions and the resolution of a real case study to be realised in a team project.

Assessment methods

The case study will be evaluated. An oral exam will concern the application of the theory in the case study.

Resources

Bibliography

All the material can be downloaded from the moodle website (http://moodle.epfl.ch/course/view.php?id=11). Printed version of the lecture notes can be ordered.

Ressources en bibliothèque

•

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=11

Videos

• http://www.klewel.com/conferences/epfl-energy-systems/