

ENV-525 Physics and hydrology of snow

Gaume Johan, Huwald Hendrik, Lehning Michael

Cursus	Sem.	Type
Environmental Sciences and Engineering	MA1, MA3	Opt.
Mineur STAS Russie	Н	Opt.

Language of teaching	English
Credits	4
Session	Winter
Semester	Fall
Exam	During the semester
Workload	120h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Exercises	1 weekly
Number of positions	

Summary

This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfaces with the atmosphere and the ground, including field, laboratory, and modeling techniques.

Content

- Processes of snow formation in the atmosphere
- Physical (thermal, optical, mechanical) properties of snow
- Snow accumulation, transport, redistribution
- Heat and mass transfer in snow, metamorphism
- Energy balance within snow and at its boundaries
- Processes of snow pack ablation and melt
- Snow cover variability and interaction with vegetation
- · Snow cover-climate interactions at various scales
- Measurement methods and field techniques
- Remote sensing of snow at different scales
- Approaches of snow cover modeling
- Snow modeling using the SNOWPACK model

Keywords

Snow, glaciology, cryosphere, avalanches, hydrology, atmospheric boundary layer, environmental physics

Learning Prerequisites

Recommended courses

ENV-167, ENV-221, ENG-272

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze a snow cover and acting physical processes
- Compute heat and mass fluxes related to snow

- Apply a detailed snow cover model (SNOWPACK)
- Formulate snow-air-ground exchange processes
- Explain the evolution of a snow cover
- Interpret a snow cover as a result of its genesis
- Perform practical field work and measurements
- Assess / Evaluate the role of snow in local and global climate

Teaching methods

Lectures, exercises (incl. computer labs), self-learning

Assessment methods

40%-Exercises (including model simulations) 60%-Written exam (end of semester)

Resources

Bibliography

Armstrong, R.L., and E. Brun, (Eds.), 2008. Snow and climate, Cambridge University Press. Barry, R.G., and T.Y. Gan, 2011. The global cryosphere, Cambridge University Press. DeWalle, D.R., and A. Rango, 2008. Principles of snow hydrology, Cambridge University Press. McClung, D., and P.A. Schaerer. The avalanche handbook. The Mountaineers Books, 2006. Selected journal articles and other text books.

Ressources en bibliothèque

- Principles of Snow Hydrology / DeWalle
- The global cryosphere / Barry
- Snow and climate / Armstrong

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=9791