CIVIL-351 Transportation systems engineering

_	_	-	
-			•••

Haddad Jack				
Cursus	Sem. BA5	Type Obl.	Language of teaching	English
Civil Engineering				
Urban Planning and Territorial Development min	orH	Opt.	Credits Session Semester	4 Winter Fall
			Exam	During the semester
			Workload	120h
			Weeks Hours	14 4 weekly
			Courses Exercises Number of	3 weekly 1 weekly
			positions	

Summary

- Introduce the major elements of transportation systems and create awareness of the broader context - Develop basic skills in applying the fundamentals of the transportation field - Understand the key concepts and physics of the transport phenomena - Connect with real transportation problems

Content

Transportation Systems and Mobility: Mobility - Activities - Land Use, Classification-Hierarchy, Multimodality-Urban Planning Demand: Demand analysis, Travel Forecasting (4-step models)

Modeling and Operations:

Basic assessment tools, Traffic flow modeling, Control and capacity of transport systems

Design of multimodal systems: Urban Policy, Case Studies, Intro to bus operations

Learning Outcomes

By the end of the course, the student must be able to:

- · Estimate how transport users choose route and mode
- · Characterize the level of service of a transport system
- Assess / Evaluate traffic signal performance
- Model traffic flow propagation
- · Identify the most appropriate strategy to alleviate congestion

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Use a work methodology appropriate to the task.
- Communicate effectively, being understood, including across different languages and cultures.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.
- Respect relevant legal guidelines and ethical codes for the profession.
- Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

Ex-cathedra with assisted exercises, course group projects

Assessment methods

Midterm 30% Final Exam 40% Laboratories 30%

Resources

Bibliography Lecture notes, book chapters and handouts will be distributed throughout the semester, or posted on web.

Prerequisite for Master classes in Transportation