

ME-331 Solid mechanics

		3 A / 1	11
('1	irtin	1/1/11	liam

Cursus	Sem.	Type
Mechanical engineering	BA6	Obl.

Language of English teaching Credits Session Summer Semester Spring Exam Written Workload 120h Weeks 14 Hours 4 weekly 3 weekly Courses Exercises 1 weekly Number of positions

Summary

Model the behavior of elastic, viscoelastic, and inelastic solids both in the infinitesimal and finite-deformation regimes.

Content

This course will articulate the behavior of elastic, viscoelastic, and inelastic solids both in the infinitesimal and finite-deformation regimes. Exact and approximate solutions to initial and boundary-value problems will be employed to analyze the stress and strain state of a finite body under different assumptions. The time/frequency dependence of viscoelastic materials will be presented. Certain constitutive models for strain and stress fields associated with permanent deformations are also analyzed.

Keywords

Large deformations, Elasticity, Viscoelasticity, Plasticity.

Learning Prerequisites

Required courses

- Mechanics of Structures II (ME-232)
- Mechanics of continuous media (ME-201)

Recommended courses

Important concepts to start the course

Theory of ordinary differential equations Theory of partial differential equations Vector/Tensor operations and properties

Learning Outcomes

By the end of the course, the student must be able to:

- Apply the concepts of rigid and deformable body mechanics and of continuum mechanics to model and solve analytically problems of statics, structural stress analysis or simple mechanisms, S1;
- · Describe and identify the constitutive behaviour of a material from the results of a tensile, torsion or bending test and

Solid mechanics Page 1 / 2

choose a suitable test standard for the characterization of such behaviour. Derive a rheological model appropriate for the observed response. S5:

• Model with appropriate tools (analytical or numerical) the nonlinear (hyperelastic, plastic, buckling) and/or time-dependent (viscoelastic, viscoplastic) behaviour of structures and material under complex loadings, S12.

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Take feedback (critique) and respond in an appropriate manner.

Teaching methods

Ex-cathedra

Expected student activities

Homework

Assessment methods

There will be a midterm exam worth 30% and a written final exam worth 70& of the grade.

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Ressources en bibliothèque

• Applied Mechanics of Solids / Bower

Notes/Handbook

A. Bower, Applied Mechanics of Solids, CRC Press, 2009

Websites

• http://moodle.epfl.ch

Prerequisite for

Computational Solid and Structural Dynamics (ME-473) Fracture mechanics (ME-432) Mechanics of composites (ME 430)

Solid mechanics Page 2 / 2