ME-430 Mechanics of composites

Curtin William				
Cursus	Sem.	Туре	Language of	English
Mechanical engineering	MA1, MA3	Opt.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	5 Winter Fall Written 150h 14 4 weekly 3 weekly 1 weekly

Summary

Students will learn how to compute elastic, thermal, and other properties of composites as a function of materials and geometry; understand damage modes and strength limits for various classes of composites (polymers, metals, ceramics reinforced with particles or fibers).

Content

The course will consist of a systematic development of the mechanical models for predicting, or interpreting experimental results on, the mechanical properties of composites, including homogenized continuum response, damage mechanisms, strength/toughness, across the full spectrum of materials and geometries of current and future composite materials.

- Introduction on the scope of composite materials and applications
- Inclusions in a matrix: the Eshelby problem
- · Multiple inclusions, effective material properties, and homogenization concepts
- · Multiphase systems, anisotropic materials, plastic response, polycrystals and hierarchical systems
- · Review of Fracture Mechanics concepts
- Damage Mechanisms in particulate composites
- Damage mechanisms in fiber-reinforced composites (polymer, metal, ceramic matrices)
- · Long vs. short fiber composites and predictive strength models
- Mechanics of matrix cracking
- Polycrystalline ceramics as composites
- Damage-tolerant Design concepts
- Damage mechanics approaches to failure
- Biological and Nano composites

Keywords

Composites, Mechanical Behavior, Homogenization, Strength, Failure

Learning Prerequisites

Required courses

- Continuum mechanics
- Solid mechanics

Important concepts to start the course

• Apply the concepts of rigid and deformable body mechanics and of continuum mechanics to model and analytically solve problems of statics, structural stress analysis or simple mechanisms, S1

• Model with appropriate tools (analytical or numerical) the nonlinear (hyperelastic, plastic, buckling) and/or time-dependent (viscoelastic, viscoplastic) behaviour of structures and material under complex loadings, S12

• Basic programming skills in MATLAB or other high-level method

Learning Outcomes

By the end of the course, the student must be able to:

• Apply the principles of damage, fatigue and fracture mechanics to predict the size and localisation of critical defects and the number of cycles to failure of a real structure under complex loading conditions, S8

• Apply the models for the behaviour of composite materials and laminates to compute the stiffness, the deformed shape and the stresses of a simple composite structure. S7

• Present and evaluate the performance of different classes of composite materials and their constituents as well as the production processes currently in use, S6

Transversal skills

- Write a scientific or technical report.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Make an oral presentation.

Teaching methods

Ex-cathedra

Assessment methods

Homework and mini-project assignments during the semester; final written exam

Supervision

Office hours	Yes
Assistants	Yes