

Data analysis and model classification

Chavarriaga Lozano Ricardo Andres, Millán José del R.

Cursus	Sem.	Type
Bioengineering	MA1, MA3	Opt.
Computational Neurosciences minor	Н	Opt.
Neuroprosthetics minor	Н	Opt.
Sciences du vivant	MA1, MA3	Opt.

Language of teaching	English
Credits	4
Session	Winter
Semester	Fall
Exam	Written
Workload	120h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of positions	

Summary

This course introduces several machine learning techniques for the data analysis and classification in Bioengineering applications. Following an application-oriented approach, each technique is illustrated with examples from fields such as neural engineering, movement analysis and bioinformatics.

Content

1 Introduction to Machine learning

Supervised vs Unsupervised approach, Training and testing techniques

2 Regression methods

Linear methods, Other methods, Statistical models

3 Feature selection

Filters, wrappers, Information theory

4 Dimensionality reduction

Principal component analysis (PCA); Independent component analysis (ICA), Clustering approaches

5 Temporal pattern recognition / Sequence analysis

Hidden Markov Models

6 Case studies - Prosthetics

Application specific constraints (e.g. single trial, compliance, time lag), Wearable robots, Neuroprosthetics

Learning Prerequisites

Important concepts to start the course

Matlab programming (tutorial provided at the beginning of the course)

Teaching methods

Lectures, exercises

Expected student activities

Students will have to carry out weekly exercises and provide a written report.

Assessment methods

Written exam. Final grade: 2/3 Exam, 1/3 Exercises.

Resources

Bibliography

The course has no textbook (it is based on several sources). Suggested reading material will be provided periodically.

The following books are suggested:

- C. Bishop: Neural Networks for Pattern Recognition
- R.O. Duda, P.E. Hart and D.G. Stork: Pattern Classification
- C. Bishop: Pattern Recognition and Machine Learning

Ressources en bibliothèque

- Pattern Recognition / Stork
- Neural Networks for Pattern Recognition / Bishop
- Pattern Recognition and Machine Learning / Bishop

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=8851