BIO-463 Genomics and bioinformatics	
-------------------------------------	--

Rougemont Jacques

	_			
Cursus	Sem.	Туре	Language of	English
Bioengineering	MA2, MA4	Opt.	teaching	4 Summer Spring
Sciences du vivant	MA2, MA4	Opt.	Credits Session	
Systems Engineering minor	Е	Opt.	Semester	

Summary

This course reviews the different techniques of DNA sequence analysis and the associated bioinformatics tools in the context of applications to current research in molecular biology.

Content

- · Genome sequencing and assembly
- Genome annotation, gene prediction
- Hidden Markov Models
- Comparative genomics
- Phylogenetic trees
- Models of molecular evolution
- Transcription
- Gene expression profiling
- Gene regulation
- Chromosome conformation

Learning Prerequisites

Recommended courses

Molecular biology, genetics, linear algebra, ordinary differential equations, basic statistics, computer programming

Important concepts to start the course DNA and RNA, replication, transcription and translation.

Learning Outcomes

By the end of the course, the student must be able to:

- Interpret large-scale genomic data
- Manipulate high-dimensional, noisy and heterogeneous genomic data
- Describe classical algorithms for DNA sequence analysis and gene expression classification
- Develop a quantitative understanding of transcriptional regulation

During the semester

4 weekly 2 weekly

2 weekly

120h

14

Exam

Workload

Courses

Exercises Number of positions

Weeks

Hours

Transversal skills

- Access and evaluate appropriate sources of information.
- Summarize an article or a technical report.
- Communicate effectively with professionals from other disciplines.
- Use both general and domain specific IT resources and tools

Teaching methods

2 hours lecture (theoretical concepts) followed by 2 hours practical exercises (review the theory and practice with bioinformatics tools and data)

Lecture notes, slides and exercises provided on Moodle.

Assessment methods

2 written tests covering mostly the lecture part: at week 7 and week 14, each counts for 50% of the grade.

Resources

Bibliography

- A primer of genome science / Greg Gibson, Spencer V. Muse
- Bioinformatics: sequence and genome analysis / David W. Mount
- Bioinformatics and functional genomics / Jonathan Pevsner
- Biological sequence analysis: probabilistic models of proteins and nucleic acids / Richard Durbin

Ressources en bibliothèque

- Bioinformatics and functional genomics / Pevsner
- Bioinformatics: sequence and genome analysis / Mount
- A primer of genome science / Gibson
- Biological sequence analysis: probabilistic models of proteins and nucleic acids / Durbin

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=11181